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Abstract

The inherent nonlinearity of free surface fluid–structure interaction (FSI) problems challenges numerical methods in terms
f efficiency and fidelity. In this article, we propose an immersed finite element material point method for the water entry
uid–structure interaction problems. In this method, the fluid domain is discretized by an improved incompressible material
oint method (iMPM) using both Eulerian and Lagrangian descriptions, while the solid domain is solved by finite element
ethod (FEM). The interaction between the iMPM and FEM is handled by a sharp immersed interface approach. Moreover,
eighted tracing points are designed to track the fluid–structure interface with a low time complexity; a particle rearranging
ethod is developed to eliminate the numerical cavities, which are non-physical voids caused by the highly disordered particle

istribution, from which the original iMPM for FSI problems suffers. Various free surface FSI problems are presented to
emonstrate the accuracy and effectiveness of the proposed method. The computational results are compared with analytical,
xperimental, and simulation data from the literature, with good agreement in cases where such data is available. The proposed
ethod is expected to be a powerful tool for free surface FSI problems.
2022 Elsevier B.V. All rights reserved.

eywords: Fluid–structure interaction; Multiphase flow; Immersed boundary; Water entry; Material point method

1. Introduction

Free surface fluid–structure interaction (FSI) problem is of great interest in energy, ocean, naval industries, and
any other science and engineering fields. The applications, just to name a few, include water entry of spacecrafts

nd projectiles, and the coupled behaviors between wave and offshore oil platforms, ships and other floating
odies [1–5]. In order to solve such problems, numerical methods need to deal with not only the complex fluid–
tructure coupling issues, but also the capturing/tracking of violent free surface. The inherent nonlinearity involved
n such problems makes it very challenging to develop numerical methods with high efficiency and fidelity.

Many efforts have been devoted to the development of the numerical methods for FSI problems. For the time
eing, there are many well-known numerical methods, such as ALE (arbitrary Lagrangian–Eulerian) methods, IB
immersed boundary) methods, among others. Although ALE methods [6–14] are attractive due to convenient
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implementation of FSI boundary conditions, they have difficulties in dealing with large deformation and violent
free surfaces. The IB methods [15–23], on the other hand, are suitable to solve FSI problems with large structural
deformation. However, as reviewed by Huang and Tian [24], the challenges of IBM are manifolds, such as violation
of conservation due to interpolation, modeling of turbulence boundary layers and multi-phase flow, and parallel
efficiency. Among them, the air–water–structure interaction problem (e.g., the water entry problem in this study) is
a very challenging topic with various numerical difficulties, e.g., simultaneously handling the fluid–solid and fluid–
fluid interfaces, coupling of multi-physical fields. A feasible strategy to solve this kind of problem is to integrate IB
methods with Eulerian interface capturing schemes, such as volume of fluid (VOF) [25], level-set [26], coupled VOF
Level-set [27], or moment-of-fluid (MOF) [28] methods. Efforts in coupling IB methods with level-set methods can
be found in [29,30]. However, interface capturing methods will increase considerable computational costs, since
the free surface is either derived by solving certain functions, or iteratively reconstructed from background cell
information. Moreover, the free surface often smears over computational cells, and the reconstruction of three-
material interfaces is dependent on the looping sequence of the materials, if not handled properly [31]. All these
difficulties call for more sophisticated interface reconstruction techniques, which are time consuming.

In order to directly track the free surface, meshless/particles methods can be employed, e.g., SPH (smoothed
article hydrodynamics) [32,33], MPS (moving particle semi-implicit) [34–38], and MPM (material point method)
39–44]. Although many works using the particles methods for FSI and free surface FSI problems [42,45–55] are
resented, two major numerical issues are frequently encountered in these Lagrangian methods: (1) non-physical
ressure oscillations; (2) numerical cavities (non-physical voids manifesting in highly disordered particles/material
oints distribution). For the first issue, the incompressible SPH has been developed [56–61]. Kularathna et al. [62]
nd Zhang et al. [63] have independently proposed the incompressible MPM (iMPM), where projection method is
mplemented to maintain the incompressibility. By using these techniques, non-physical pressure oscillations can
e greatly suppressed. For the second issue, various remedies have been proposed, such as the density-variation
onstraint [64], particle shifting strategy [65,66], particle coalescing and splitting technique [67], and adaptive
ampling scheme [68]. Additionally, in many particle-based methods, the neighboring information of particles needs
o be stored and updated for every 1 or n time step(s). For particles in the number of np, the basic updating method
f their neighboring information has a time complexity of O(n2

p), and the tree search scheme can reduce it to
O(np log np). More advanced method [69] can achieve a time complexity of O(np). While in MPM and iMPM, the
eighboring information of particles is not required and thus they have a promising computational efficiency when
ealing with extreme deformation and multi-phase solid–liquid problems [70,71]. However, iMPM suffers from
umerical cavities when solving the fluid problems, and most of the above-mentioned techniques are not suitable
or MPM, due to the lack of particle neighboring information.

In this article, we propose an IFEMP (immersed finite element material point) method, which couples FEM and
mproved iMPM with sharp immersed interface. In IFEMP, weighted tracing points, an efficient cell tagging strategy,
nd a particle rearranging method are developed to distinguish FSI interfaces with a time complexity of O(np), and
o eliminate numerical cavities. In addition, the original iMPM developed by Zhang et al. [63] is improved in pure
uid dynamics problems in terms of efficiency and eliminating numerical cavities. Various validation examples
chieve good agreement with theoretical, numerical and experimental data in the literature. Finally, a practical free
urface FSI problem encountered in aerospace engineering is presented.

In the remainder of this article, Section 2 lists the governing equations in the free surface FSI problem, Section 3
ntroduces the IFEMP method in detail, Section 4 is validation and application examples, and Section 5 presents
onclusions.

. Governing equations

The spatial domain Ω of the fluid–structure interaction problem consists of the fluid domain Ωf and the solid
omain Ωs, as shown in Fig. 1. For more than one solid body, the solid domain is expressed as Ωs1, Ωs2, etc.
he solid–solid contact interface is Γcontact = ∂Ωs1 ∩ ∂Ωs2, and the solid traction and displacement boundaries are
xpressed by Γst and Γsd, respectively. The fluid domain has a free surface Γfree. The FSI interface is the common
nterface of fluid and solid domains, namely ΓFSI = ∂Ωf ∩ ∂Ωs. The rest of domain Ω is the environmental gas
ith a referencing uniform pressure. The velocity field of the gas will not be solved to save the computational cost,

ince its effect on the solution accuracy is negligible for the problem considered in this study.
2
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Fig. 1. The computational domain Ω consists of fluid domain Ωf, solid domain Ωs, solid–solid contact interface Γcontact, solid traction
boundary Γst, solid displacement boundary Γsd, free surface Γfree and FSI interface ΓFSI.

2.1. Fluid domain

The general form of Navier–Stokes equation in the viscous incompressible fluid domain Ωf is as follows:

ρf
Duf

Dt
= −∇ p + µ∇

2uf + ρf g + bf (1)

here ρf is the fluid density, uf is the fluid velocity vector, p is the fluid pressure, µ is the dynamic viscosity, g
denotes gravitation, bf is fluid body force, and D

Dt denotes the material derivative with respect to time.
The continuity equation for incompressible fluid is:

∇ · uf = 0 (2)

On the free surface Γfree, the Dirichlet pressure boundary condition is satisfied:

p|Γfree = patm (3)

where patm is the gas pressure, and set to atmospheric pressure for water–air systems.

2.2. Structural domain

In the solid domain Ωs, the momentum equation reads:

ρs
∂2d
∂t2 − ∇ · σ s = bs (4)

here ρs is the solid density, d is the solid displacement vector, σ s is the Cauchy stress, and bs denotes the solid
ody force.

The constitutive equation is given as:

σ∇

s = S(ε̇, σ s, . . .) (5)

here σ∇
s is the Jaumann stress rate, the function S is related to the specific constitutive model, and ε̇ is the strain

ate:

ε̇ =
1
2

[
∇us + (∇us)

T] (6)

with us being the solid velocity.
On the traction boundary Γst and displacement boundary Γsu of the solid domain, the following boundary

onditions are imposed:

d|Γsd = d̄sd, (σ s · ns)|Γst = f̄ st (7)

¯ ¯
here dsd is the given boundary displacement, f st is the traction, and ns is the normal vector of solid surface.

3
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Fig. 2. Variables stores on cell centers, nodes and particles. The subscripts c, n, p represent the cell centers, nodes and particles, respectively.

For contact problems, the non-penetration condition needs to be satisfied at the solid–solid contact interface
contact:

[(us1 − us2) · ns1] |Γcontact ⩽ 0 (8)

here ns1 is the boundary normal vector of solid body 1, and us1 and us2 denote the velocity of solid body 1 and
olid body 2, respectively.

.3. Coupling conditions

At the fluid–structure interface ΓFSI, the kinematic coupling condition is met:

uf|ΓFSI = us|ΓFSI (9)

here uf and us, respectively, denote velocities on the fluid and solid side.
The dynamic condition at the FSI interface is written as follows:

(σ f · nf)|ΓFSI + (σ s · ns)|ΓFSI = 0 (10)

here σ f and σ s are fluid and solid stresses, nf and ns are normal vectors of fluid and solid boundaries.

. Numerical methodology

This section introduces the IFEMP method, which belongs to the partitioned fluid–structure interaction formu-
ation. The fluid solver is presented in Section 3.1, the solid solver in Section 3.2, and the FSI coupling algorithm
n Section 3.3.

.1. Improved iMPM for fluid dynamics

.1.1. Spatial discretization
The iMPM uses both Eulerian and Lagrangian descriptions. The spatial domain is discretized using the

ackground grid, as well as a set of fluid particles, as shown in Fig. 2. The initial number of particles in each
ell is 2 × 2 × 2 for 3D cases. The background grid (i.e., structured mesh) is used to solve the momentum and
ressure equations. To avoid the “checkboard” issue, the fluid velocities uf are stored on nodes, and pressures p on
ell centers. The fluid particles, on the other hand, are employed to transport the physical quantities, and trace the
ree surface in a Lagrangian way.

At the initial of nth time step, we map the particles’ velocity to the background grid as follows:

un
fn =

∑npn
i=1 Nnpi un

fp∑npn
i=1 Nnpi

(11)

where Nnpi is the shape function of the grid node at the i th particle, and npn is the total number of particles located

in the cells attached to the fluid node. In this work, since the background cells can be regarded as finite difference

4
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cells, as well as FEM 8-node serendipity elements, the tri-linear shape function N =
1
8 (1 ± ξ )(1 ± η)(1 ± ζ ) is

mployed here.

.1.2. Chorin’s projection method
Chorin’s projection method [72,73] is used to solve the coupled system of momentum equation (1) and continuity

quation (2). It is an operator splitting method based on the Helmholtz–Hodge splitting principle. By introducing
n intermediate velocity (or predicted velocity) u∗

f , Eq. (1) is split into the following two equations:

ρf
u∗

f − un
f

∆tf
= µ∇

2un
f + ρf g + bf, ρf

un+1
f − u∗

f

∆tf
= −∇ pn+1 (12)

here ∆tf is the time step size of the fluid solver.
Since the final velocity at next time step un+1

f should satisfy the continuity equation (2), taking divergence of
he second equation in Eq. (12) and combining Eq. (2) yield:

∇ · u∗

f =
∆tf
ρf

∇
2 pn+1 (13)

qs. (1) and (2) can thus be solved through three steps: (1) predicting an intermediate velocity, (2) solving pressure,
nd (3) correcting the intermediate velocity to satisfy the continuity equation as follows.

The first step of the projection method is to obtain a predicted nodal velocity u∗

fn by neglecting the pressure
gradient term, namely:

u∗

fn = un
fn +

∆tf
ρfn

(
µ∇

2un
fn + ρfn g + bf

)
(14)

here subscript n denotes the variables associated with background nodes.
The second step is to solve the cell center’s pressure at the (n + 1)th time step using the following pressure

oisson equation (PPE):

∇
2 pn+1

c =
ρfc

∆tf
∇ · u∗

fc (15)

here subscript c denotes the variable on cell center. In 3D cases, the cell center’s velocity divergence is obtained
ccording to the divergence free condition in Eq. (2):

∇ · u∗

fc = ∇ ·

[
8∑

i=1

(
Ncni u∗

fni

)]
=

8∑
i=1

(
u∗

fni · ∇Ncni
)

(16)

here Ncni is the shape function of the i th grid node at the cell center. By using Eq. (16), the velocities are no
onger needed to be stored on cell centers.

Fig. 3 presents the finite difference scheme for solving Eq. (15). Seven stencils are used for the 3D cases. The
aplacian term of the cell center’s pressure is discretized as:

∇
2pci, j,k =

pci−1, j,k −2pci, j,k + pci+1, j,k

∆L2
fx

+
pci, j−1,k −2pci, j,k + pci, j+1,k

∆L2
fy

+
pci, j,k−1−2pci, j,k + pci, j,k+1

∆L2
fz

(17)

here i, j and k, respectively, denote cell indices in the x, y, z directions. ∆L fx , ∆L fy and ∆L fz are cell sizes in
he x, y, z directions. Fig. 4 presents the boundary condition treatments when solving the pressure. In Fig. 4-(a),
he left edge is Dirichlet boundary and satisfies p = pref, where pref is a given boundary pressure. In Fig. 4-(b),
he lower edge is Neumann boundary and meets ∂p

∂n = cN , where cN is a given pressure gradient, and usually set
to cN = 0 on fixed walls. In order to obtain pci, j,k at the corner, pci−1, j,k and pci, j−1,k are needed. Since they are

ut of the computational domain, an extrapolation method is applied as follows:

pci−1, j,k = 2pref − pci, j,k, pci, j−1,k = pci, j,k − cN∆L fy (18)

fter the discretization above, the PPE is transformed into linear equations. We use a direct solving method for
mall scale PPE, and a preconditioned conjugate gradient (PCG) method for large scale problems.

The last step of the projection method is to correct the nodal velocity as follows:

un+1
fn = u∗

fn −
∆tf

∇ pn+1
n (19)
ρfn

5
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Fig. 3. Pressure storage scheme for solving the pressure Poisson equation.

Fig. 4. Pressure boundary condition treatments: (a) Dirichlet boundary; (b) Neumann boundary.

The nodal velocity un+1
fn at the (n + 1)th time step is thus obtained. In order to get the nodal pressure gradient in

q. (19), we reconstruct the nodal pressure from cell center pressure as follows:

pn+1
n =

∑8
i=1 Ncni pn+1

c∑8
i=1 Ncni

(20)

he nodal pressure gradient ∇ pn+1
n is then calculated by finite difference method.

.1.3. The particle updating scheme
The updated velocity and pressure obtained on the background grid are mapped back to the particles, and then

ransported by them. For particle’s velocity mapping, the following scheme is used enlightened by Zhu et al. [74]:

un+1
fp = γ

8∑
i=1

Npni un+1
fni + (1 − γ )

(
un

fp + ∆tf
8∑

i=1

Npni
∂un

fni

∂t

)
(21)

here Npni is the shape function of the i th grid node at particle, γ is a user-set coefficient with the range from 0
to 0.3. Although this scheme is with small numerical viscosity, it is very robust according to our numerical tests.
The nodal acceleration term is obtained by the following equation:

∂un
fn

∂t
=

1
ρfn

(
−∇ pn

n + µ∇
2ufn + ρfn g + bf

)
(22)

The position of the particles is then be updated by using a third order TVD (total variation diminishing)

Runge–Kutta scheme, and the physical information is transported by the updated particles.

6
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3.1.4. Free surface treatment
For a two-phase system, e.g., a water–gas system with water density ρwater and gas density ρgas, the density of

the cell ρfc is determined by calculating the density of the mixture. Therefore, the free surface cell has a density of
αρwater + (1 − α)ρgas, where α is the volume fraction of water and calculated as:

α = min
{

1
8

[
npic

max
i=1

(ξpi ) −

npic

min
i=1

(ξpi ) + ξp0] · [
npic

max
i=1

(ηpi ) −

npic

min
i=1

(ηpi ) + ηp0]·

[
npic

max
i=1

(ζpi ) −

npic

min
i=1

(ζpi ) + ζp0], 1
} (23)

here ξpi , ηpi , ζpi are local coordinates of the i th particle in this cell, and npic is the number of particles in each
cell. ξp0, ηp0, ζp0 are initial spatial intervals between particles described by local coordinates. For a 3D cell with
eight uniformly distributed particles, we have ξp0 = ηp0 = ζp0 = 0.5.

Fig. 5 presents the boundary condition treatment on the free surface when solving the PPE. The curve in the
omputational domain denotes the free surface (gas–liquid interface), and satisfies p = pgas with pgas being the

atmospheric pressure. Since pressure pci, j+1,k is out of the computational domain, it is extrapolated as:

pci, j+1,k = pgas −
∆L fy − ∆L freey

∆L freey
(pi, j,k − pgas) (24)

and

∆L freey =
1
2
∆L fy

(⏐⏐⏐⏐⏐ 1
npic

npic∑
i=1

ηpi +
1
2
ηp0 − 1

⏐⏐⏐⏐⏐+ 1

)
(25)

.2. FEM for structural dynamics

The solid domain Ωs is solved by FEM. By using virtual displacement δd as test function, the weak form of
quilibrium equation (4) reads:∫

Ωs

ρs d̈ · δddΩ +

∫
Ωs

σ s : δ∇ddΩ −

∫
Ωs

bs · δddΩ −

∫
Γst

f̄ st · δddΓ −

∫
ΓFSI

f̄ sf · δddΓ = 0 (26)

here f̄ sf is the fluid force at the FSI interface ΓFSI, and the double superimposed dots denote second order time
erivative. After FEM discretization, the displacement at any position x can by interpolated by the FEM nodal
isplacement dk :

d(x, t) =

ne∑
k=1

Nek(x)dk(t) (27)

here ne is the number of nodes of the element, and Nek is the shape function of the kth node at point x.
By substituting Eq. (27) into Eq. (26), the nodal momentum equation is obtained as:

M d̈ = f (28)
k k sk

7
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Fig. 6. Spatial discretization in the IFEMP (immersed finite element material point) method.

here the lumped mass of node k is:

Mk =

∫
Ωs

ρs NekdΩ (29)

nd the nodal force including external force f ext
sk and internal force f int

sk reads:

f sk = f ext
sk + f int

sk

=

∫
Ωs

Nek bsdΩ +

∫
Γst

Nek f̄ stdΓ +

∫
ΓFSI

Nek f̄ sfdΓ −

∫
Ωs

(∇Nek) · σ sdΩ
(30)

here f̄ sf is the fluid forces on solid surface and reads:

f̄ sf = −pnFSI + µ
∂uf

∂nFSI
(31)

ith nFSI being the normal vector on the FSI boundary pointing to the fluid side.
The velocity usk and displacement dk on node k will be updated by the following explicit time integration

cheme:

un+1/2
sk = un−1/2

sk + ∆tn
s

f n
sk

Mn
k
, dn+1

k = dn
k + ∆tn+1/2

s un+1/2
sk (32)

where ∆ts is the time step size of the solid solver. In the FEM with explicit time integration scheme, one-point
Gaussian quadrature is used, and the Flanagan/Belytschko damping is employed to suppress the hourglass modes.

To deal with the contact between different solid bodies, a point-to-surface contact method with a local search
algorithm is used. The contact force is imposed by an iterative process, to simultaneously satisfy contact conditions
for all contact pairs. For more details on the contact method, please refer to [75].

3.3. Fluid–structure interaction method

The IFEMP method uses a sharp immersed interface, to couple the iMPM and FEM with a Dirichlet–Neumann
scheme. As shown in Fig. 6, the whole computational domain Ω is discretized into background grid, while the solid
domain Ωs is discretized into FEM elements and the fluid domain Ωf into fluid particles. In order to accurately
distinguish the FSI interface and free surface in the computational domain, background cells are tagged into five
categories: fluid, immersed boundary, free surface, empty/solid, and fluid–solid buffer. At FSI interface ΓFSI, the
solid velocity is interpolated to the fluid side (Dirichlet boundary), and the fluid forces are applied on the solid

surface (Neumann boundary).

8
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Fig. 7. Weighted tracing points (diamond shape dots) on the FEM element patches. The solid dots are FEM nodes, blocks with dotted lines
re background cells, and the block with solid lines is the “bucket” occupied by the FEM patch.

It is definitely non-trivial to accurately identify the FSI interface and free surface. The separation and gathering
f particles can cause numerical cavities, and bring difficulty to the calculation. In order to overcome these issues,
e here introduce the concept of weighted tracing points, an efficient cell tagging strategy, and a particle rearranging
ethod.

.3.1. Weighted tracing points
In the strategy, the weighted tracing points are created on FEM patches of the solid surface. They will move

ogether with the structural movement and deformation, and have twofold functions:

(1) Serving as markers to tag the cells and trace the FSI interface;
(2) Acting as a weight for FSI interface interpolation.

At the beginning of the FSI simulation, once the solid domain has been discretized into FEM elements, a group
f weighted tracing points will be generated. As shown in Fig. 7, a quadrilateral FEM patch is located in the
omputational domain. The four FEM nodes on this patch have global coordinates xrk with k = 1, . . . , 4, and two
f the nodes will coincide if the patch degenerates into triangular patch. Considering the patch occupying a “bucket”
n the computational domain (the block with solid lines in Fig. 7), the size of the bucket can be described with an
rray of three terms, ∆Lr(∆L rx ,∆L ry,∆L rz), which can be obtained by the maximum and minimum coordinates
f the four nodes:

∆L ri = max(xr1i , . . . , xr4i ) − min(xr1i , . . . , xr4i ), i = x, y, z (33)

Since the background cell size ∆Lf(∆L fx ,∆L fy,∆L fz) is usually smaller than the bucket size ∆Lr, we divide
ach edge of the FEM patch into nrd segments, and thus divide the patch into n2

rd sub-patches. Therefore, n2
rd

eighted tracing points are created at the centers of the sub-patches. The division number nrd is determined by the
ollowing equation:

nrd = max
[
R
(

∆L rx

γrf∆L fx

)
,R

(
∆L ry

γrf∆L fy

)
,R

(
∆L rz

γrf∆L fz

)
, 1
]

(34)

where γrf ∈ (0, 1) is a tunable coefficient, which means the ideal size ratio between the bucket and background
cells, and R is the roundup function. Using a smaller γ will generate more points, which can improve the tagging
ccuracy at the expense of the computer memory. We find that γrf = 0.2 can achieve acceptable accuracy, which

usually generates 4 points for smaller patches and 9 points for larger patches.
9
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The local coordinates χmi j of the weighted tracing point with local index (i, j) is obtained by:

χmi j (ξmi j , ηmi j ) =

(
2i − 1

nrd
− 1,

2 j − 1
nrd

− 1
)

, i = 1, . . . , nrd, j = 1, . . . , nrd (35)

The global coordinates of the (i, j)th weighted tracing point read:

xmi j =

4∑
k=1

Nri jk xrk (36)

here Nri jk is the shape function of kth node of the patch at (i, j)th weighted tracing point. The shape function
as the same form with the linear quadrilateral element:

Nri jk =
1
4

(1 + ξri jξrk)(1 + ηri jηrk), k = 1, . . . , 4 (37)

The velocity of the (i, j)th weighted tracing point reads:

umi j =

4∑
k=1

Nri jk urk (38)

where urk is the velocity of the kth FEM node.
The area of the (i, j)th sub-patch is then assigned to the (i, j)th weighted tracing point, which is calculated by

the cross-product of the sub-patch’s edge vectors by the following equation:

Ami j =
1
2

[|(xmi j2 − xmi j1) × (xmi j4 − xmi j3)|

+ |(xmi j2 − xmi j3)| × |(xmi j4 − xmi j3)|]
(39)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xmi j1 = x−−

m +
(x+−

m − x−−
m )(i − 1)

nrd

xmi j2 = x−−

m +
(x+−

m − x−−
m )i

nrd

xmi j3 = x−+

m +
(x++

m − x−+
m )(i − 1)

nrd

xmi j4 = x−+

m +
(x++

m − x−+
m )i

nrd

(40)

nd ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x−−

m = xr1 +
(xr4 − xr1)( j − 1)

nrd

x+−

m = xr2 +
(xr3 − xr2)( j − 1)

nrd

x++

m = xr2 +
(xr3 − xr2) j

nrd

x−+

m = xr1 +
(xr4 − xr1) j

nrd

(41)

To be noted, Ami j =
Ar

nrd
2 can be used as an approximation of the area, where Ar is the patch’s area. This

equation is more efficient, and is close to Eq. (39) when the elements are less distorted. The sub-patch area
Ami j is used as the weight for FSI interpolation. The generation process of weighted tracing points is detailed in
Algorithm 1.

3.3.2. An efficient cell tagging strategy
After generating a list of weighted tracing points, the IB cells can now be tagged. However, difficulties are often

encountered when tagging fluid cells due to numerical cavities. Here, we introduce an efficient cell tagging strategy,
10
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Algorithm 1: Weighted tracing points generation
Input: FEM element and node list, fluid cell size ∆Lf, tunable coefficient γrf
Output: Weighted tracing point list

1 foreach FEM element do Extract its exterior surface patches;
2 Form the FEM surface patches list;
3 foreach FEM surface patch do
4 foreach FEM node of this patch do Get its global coordinates xrk ;
5 Get the bucket size of this patch ∆Lr(xrk) by Eq. (33);
6 Determine the number of divisions nrd(∆Lr,∆Lf, γrf) by Eq. (34);
7 for i = 1 to nrd do
8 for j = 1 to nrd do
9 Create the (i, j)th weighted tracing point;

10 Assign its local coordinates χmi j (nrd, i, j) by Eq. (35);
11 Obtain its global coordinates xmi j (χmi j , xrk) by Eq. (36);
12 Get its velocity umi j

(
χmi j , urk

)
by Eq. (38);

13 Calculate its area Ami j (xrk, nrd, i, j) by Eq. (39);
14 end
15 end
16 end
17 Form the weighted tracing points list;

which is based on the neighboring information of background cells instead of particles. The major difference here
is that the neighboring information of particles needs to be updated every time once the particles moved, while the
neighboring information of background cells remain unchanged during the whole time.

The process of the efficient cell tagging strategy is presented in Algorithm 2. It does not solve any evolution
quations, only takes a few times of traversals on cells and particles. The cell tagging strategy, integrated with the
article rearranging method, which will be introduced later in Section 3.3.3, can effectively and efficiently eliminate
umerical cavities. The tagging strategy includes five major transversals, i.e. the five “foreach” in Algorithm 2, as
hown in Fig. 8(a)–(e). The details of these steps are introduced as follows:

(1) The first step tags IB cells, and has a time complexity of O(nc) with nc the background cell number. Each
background cell has a dynamic array of pointers, which contains the addresses of tracing points inside this
cell. Since structured grids are used, it is easy to know which cell a tracing point belongs to, simply by its
global coordinates xm. When updating position of tracing points at the end of every FSI simulating step,
their addresses are incidentally pushed to the corresponding cells.

(2) This step is to eliminate numerical cavities. If an empty cell has no fluid particles, e.g., the cell with bold
edges in Fig. 8-(b), it becomes a potential numerical cavity cell. If fluid particles exist in the vicinity of the
cell boundary, the empty cell is tagged as a fluid cell. New particles are generated in this cell afterwards, and
the numerical cavities will be effectively suppressed. The “vicinity” here is defined by “the absolute value of
the natural coordinates of the particle exceeds 0.75”, as the region occupied by each fluid particle is assumed
to be one-eighth of the fluid cell volume. This loop has a time complexity of O(np).

(3) This step is to only consider the influence of the “wet” part of the solid domain for improving the
computational efficiency and robustness. In Fig. 8-(c), the two cells with bold edges are previous IB cells
with no fluid particles inside, which indicates they may be away from the fluid domain. To further tag them
correctly, the neighboring information is used. Each background cell has 6 neighboring cells (front, back,
left, right, top and bottom) for 3D cases. Considering the loop of neighbors, this step has a time complexity
between O(ncIBe) and O(6ncIBe), with ncIBe being the number of IB cells without fluid particles inside, which
is of course much smaller than the total cell number nc. Actually, at most time it is not necessary to check all
6 neighbors to distinguish “dry” and “wet” cells. At average, this step has a time complexity of approximately
O(0.1nc) ∼ O(0.3nc). After this step, as shown in Fig. 8-(c), the true “dry” cell with bold edges is tagged

as empty, and the “wet” cell with bold edges is still IB cell.

11
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Fig. 8. Process of the efficient cell tagging strategy and particle rearranging method.

(4) This step is to tag free surface cells, see Fig. 8-(d). It has a time complexity between O(ncf) and O(6ncf),
with ncf the number of fluid cells. Usually most of the background cells are fluid cells, the time complexity
is thus approximately O(1.8nc) ∼ O(2.4nc).

(5) This step is to tag fluid–solid buffer cells, corresponding to Fig. 8-(e). The buffer cells help to absorb and
delete particles that penetrate through the FEM patches. This can prevent from the effect of the penetrated
particles on the tagging accuracy of next time step. The time complexity of this step is O(ncIB) with ncIB the
number of IB cells, which is approximately O(0.1nc) ∼ O(0.3nc).

As stated above, the overall time complexity of the cell tagging method is approximately O(np + 3nc) ∼

O(np + 4nc). Since a background cell usually contains 8 particles for 3D cases, the time complexity of the cell
agging method is about O(n ), which is efficient.
p
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Algorithm 2: The efficient cell tagging strategy
Input: Background cells list, fluid particles list, weighted tracing points list
Output: Background cells list with updated tags

1 foreach background cell do (1)

2 if it contains tracing points then tag as IB cell else tag as empty cell;
3 end
4 foreach fluid particle do (2)

5 Get the cell contains this particle;
6 if the cell is empty then tag as fluid cell;

7 if the particle is in the vicinity of an empty cell then
8 tag the empty neighbor as fluid cell
9 end

10 end
11 foreach IB cell without fluid particles inside do (3)

12 Check its neighboring information;
13 if it does not has any fluid neighbor(s) then tag as empty cell;
14 end
15 foreach fluid cell do (4)

16 Check its neighboring information;
17 if it has empty neighbor(s) then tag as free surface ;
18 end
19 foreach IB cell do (5)

20 Get its average normal vector nIB;
21 Tag empty neighbors at the reverse directions of nIB as fluid–solid buffer cell;
22 end

3.3.3. Particle rearranging method
Particles will gather, separate, or penetrate the FEM surface patches after a certain time of movement. We here

ntroduce a particle rearranging method, which deals with this problem. As can be seen in Fig. 8-(f), new particles
larger dots) are generated in the numerical cavity cell, and the particles are not allowed to penetrate the FSI
nterface. During the particle rearranging, the total number of particles can be changed. This will not lead to mass
onservation problem, since the mass conservation is guaranteed by divergence free condition on background cells.
he rearranging process of fluid particles is concluded in Algorithm 3.

As shown in Algorithm 3, there are three steps in sequence as follows:

(1) If the following equation is met, the particle is considered to penetrate the FEM surface patches:(
xfp − xcm

)
· ncm < 0 (42)

where xfp is the fluid particle’s position, and xcm is the averaged FEM surface position and can be obtained
by:

xcm =

∑nmic
I=1 xmI AmI∑nmic

I=1 AmI
(43)

where xmI is the weighted tracing point’s position, and AmI is the area carried by the weighted tracing
point.
13
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Algorithm 3: Particle rearranging method
Input: Particles list, background cells list, weighted tracing points list
Output: Rearranged particles list

1 foreach fluid–solid buffer cell do
2 Remove all particles inside;
3 end
4 foreach IB cell do (1)

5 Remove the particles penetrate FEM surface patches;
6 end
7 foreach fluid cell without particles do (2)

8 Generate npic0 new particles;
9 end

10 foreach fluid cell with too many particles do
11 Get its neighboring information;
12 if it has neither IB nor free surface neighbors then
13 Remove original particles and generate npic0 new particles ;
14 end
15 end

Here, ncm is the averaged FEM surface normal vector calculated by:

ncm =

∑nmic
I=1 nmI AmI∑nmic

I=1 AmI
(44)

where nmI is the sub-patch’s normal vector carried by the weighted tracing point, and nmic is the number of
weighted tracing points in the background cell.

(2) In this step, npic0 is the initial number of particles in each cell, which is usually 8 for 3D cases. The pressure
and velocity of new particles will be interpolated from the background nodes by shape functions.

.3.4. Dirichlet-Neumann coupling
Since the background cells are already tagged, the solid velocity can be applied to fluid boundaries though

ackground nodes. For background nodes belonging to IB cells, the nodal velocity is interpolated from the weighted
racing points:

ufn =

∑nmn
I=1 umI AmI∑nmn

I=1 AmI
(45)

where nmn is the number of weighted tracing points around the node, and umk is velocity of the weighted tracing
point given by Eq. (38).

As shown in Fig. 9, the fluid forces are applied at the FSI interface ΓFSI, which has been discretized into FEM
ub-patches. The sub-patches are represented by weighted tracing points generated in Algorithm 1. The pressure on
ne patch of the solid element ppatch can thus be given by:

ppatch =

∑n2
rd

I=1 pmI AmI∑n2
rd

I=1 AmI

(46)

here n2
rd is the number of sub-patches, as mentioned in Eq. (34), and pmI is the pressure on the I th weighted

tracing point given by the cell pressure. For example, the following equations are met in Fig. 9:

pm1 = pm2 = pci−1, j,k, pm3 = pci, j,k, pm4 = pm5 = pci, j−1,k (47)

The solid equivalent nodal forces contributed by the fluid effect will then be obtained by using standard FEM
rocedures.
14
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Fig. 9. The pressure implementation on FSI interface.

3.3.5. Time integration
The time integration schemes of the fluid domain and solid domain have been respectively introduced in

Sections 3.1 and 3.2. The updating scheme of position of fluid particles is as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xn+1/3

fp = xn
fp + ∆tfun

fp

xn+2/3
fp =

3
4

xn
fp +

1
4

xn+1/3
fp +

1
4
∆tfu

n+1/3
fp

xn+1
fp =

1
3

xn
fp +

2
3

xn+2/3
fp +

2
3
∆tfu

n+2/3
fp

(48)

The position updating of weighted tracing points uses the FEM nodal position:

xm =

4∑
k=1

Nrk xrk (49)

During the FSI calculation, the fluid time step ∆tf is determined by the CFL condition:

∆tf ⩽ min
(
∆L f

|uf|

)
(50)

here the characterized velocity uf is often controlled by the velocity of IB interface. Since the FEM uses the
xplicit central difference scheme, the solid time step size ∆ts is determined by the solid sound speed:

∆ts ⩽ min
(

∆Le
√

Es/ρs

)
(51)

where ∆Le is the element size, and Es is the Young’s modulus. The solid time step size (determined by the sound
speed) is often much smaller than the fluid time step size, i.e. ∆ts ≪ ∆tf, due to an explicit integration scheme used
in FEM. Therefore, after one fluid solving step, the solid domain will solve for several steps, until the physical time
synchronized for the fluid domain and solid domain, and the fluid and solid domains are therefore loosely coupled.

3.4. The solving procedures

The flowchart of the IFEMP (immersed finite element material point) method is shown in Fig. 10 and details for
one time step are as follows.

1. Reconstruct background nodal velocity ufn by Eq. (11).
2. Identify fluid, solid, free surface and FSI domains by tagging background cells in Algorithm 2;
3. Apply solid–fluid Dirichlet boundary condition by interpolating velocities from weighted tracing points um

to background nodes u in Eq. (45);
fn

15
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Fig. 10. Solving process of incompressible immersed boundary material point method.

4. Solve fluid fields, obtain fluid nodal velocity ufn and cell center pressure pc by conducting the three-step
projection method in Eqs. (14), (15) and (19);

5. Apply fluid–solid Neumann boundary condition by employing FSI force f̄ sf in Eq. (31);
6. Solve the structural fields by FEM in Eqs. (26)–(32);
7. Obtain velocities of fluid particles ufp by Eq. (21), rearrange and update positions of fluid particles by

Algorithm 3 and (48);

4. Numerical examples

4.1. Validation of solid velocity and fluid pressure during water entry

First, the water entry process of a wedge is presented. As shown in Fig. 11-(a), the wedge is 1 m long, 0.5 m
wide and has a mass of 241 kg. The initial velocity at the moment it touches the water surface is 6.15 m/s. The
water domain has a width of 2 m and a depth of 1 m. The wedge is discretized by hexahedral elements and the water
domain by 3D background grids, with 2 × 2 × 2 initial particles in each cell. Symmetric boundary conditions were
applied on both fluid and solid grids to simulate the 2D case. The pressure field with the distribution of particles
at 0.04 s is plotted in Fig. 11-(b). As can be seen, the pressure contour is smooth without obvious non-physical
oscillations. Time history of the velocity of the wedge has been presented in Fig. 11-(c), where the experimental
result by Zhao et al. [76] and the simulated result using weakly compressible MPM [77] are provided for comparison.
Furthermore, Fig. 11-(d) compares the pressure distribution along the wedge at 0.0202 s between the analytical
result [78], the experimental data [76], and the simulated results by the proposed method and SPH [45], where the
definitions of the non-dimensional z∗ and p∗ can be found in [45]. It is clear that the predicted velocity and pressure

results are in line with those in the literature.
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Fig. 11. Numerical results of the water entry problem of a wedge.

Fig. 12. (a) Front face of FEM hexahedral elements in the background cells; (b) Cell tagging without weighted tracing points; (c) Cell
agging with weighted tracing points.

Fig. 12 demonstrates that weighted tracing points work well in the water entry problem, where the FEM elements
re larger than the background cells. If we tag the cells by searching FEM nodes, we will get IB cells as shown
n Fig. 12-(b). From the observation, one can find that many cells are wrongly tagged and consequently jeopardize
he calculation. By using weighted tracing points, all cells are correctly tagged, as shown in Fig. 12-(c).

The second case is the water entry of an oblique cylinder [47,79]. The cylinder has a density of 900 kg/m3,
diameter of 0.05 m, and a length of 0.2 m. The initial vertical velocity is 6.11 m/s, with an inclination angle

f 56.5◦. The weighted tracing points on the FEM surface patches are plotted in Fig. 13, where 4 tracing points

re created on smaller patches and 9 tracing points on larger patches. The evolution of the interaction between the
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Fig. 13. Weighted tracing points on the FEM surface patches of the cylinder.

Fig. 14. The fluid particles’ distribution and their velocities at different time instances.

Fig. 15. Vertical velocity of the oblique cylinder, compared with experimental data [79] and simulated results by SPH [47].

blique cylinder and the water is plotted in Fig. 14 by snapshots at increasing time. Furthermore, a quantitative
omparison of the vertical velocity profile of the cylinder between the experimental data [79] and numerical results
rom the proposed method and SPH [47] is presented in Fig. 15, which demonstrates the accuracy of the proposed
ethod.
18
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Fig. 16. FEM model of the bullet.

Fig. 17. Cavity shape formed by a vertically water-entry bullet: simulated results by the algorithm in this article (shown by the particles);
he Logvinovich’s principle (shown by the dashed lines); and the experimental images [80].

.2. Validation of cavity shape evolution

This section presents the cavity shape evolution during the water entry of a bullet. The profile of the bullet is a
east square curve given in experimental work by Shi et al. [80], and was modeled by FEM, as shown in Fig. 16.
he cavity formed by the bullet was recorded by the high-speed camera in their experiments. The lead bullet has
mass of 2.67 g, a density of 11,400 kg/m3, a length of 12.3 mm and a diameter of 5.7 mm. The initial velocity

is 342 m/s with ±5 m/s error in the experiments, and the simulated initial velocity is 340 m/s. The water tank
s 60 cm in length and width, and 80 cm in depth. Fig. 17 compares the cavity shape from our numerical result,
emi-theoretical result with Logvinovich’s principle (given in the Appendix), and the experimental result. Note that
19
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Fig. 18. Cavity shape formed by a obliquely water-entry bullet: simulated result by the algorithm in this article comparing with the
Logvinovich’s principle.

Fig. 19. Geometry of the dam break flow through a rubber gate.

the outermost particles in free surface cells are used to illustrate the cavity shape. As can be seen, the simulated and
semi-theoretical cavity shapes are close. However, considerable difference exists between the experimental images
and the theoretical/simulated results. Since only images of cavity shape are available from [80], the error of image
extraction is a possible reason for the difference.

Fig. 18 shows the water-entry of the bullet with an inclination angle of θv = 80◦. As can be seen, the simulated
cavity shape is in line with the Logvinovich’s principle.

4.3. Validation of dam break problems with large structural deformations

This section presents two free surface FSI problems with large structural deformations: (1) dam-break flow
through a hyperelastic gate and (2) dam-break flow onto an elastic baffle. The two cases are conducted using 3D
models with symmetric boundary conditions.

For the first case, the experiment of the dam-break flow through a rubber gate conducted by Antoci et al. [81] is
reproduced. The initial configuration of this case is illustrated in Fig. 19. The water column is with width of 0.1 m,
height of 0.14 m, density of 1000 kg/m3, and dynamic viscosity of 1 × 10−3 Pa s. The rubber gate is with thickness
of 0.005 m, height of 0.079 m, and fixed at its upper end. The rubber was approximated by Antoci et al. [81] as a
linear elastic model with Young’s modulus of 12 MPa and Poisson’s ratio of 0.4. However, a hyperelastic model will
be more appropriate to describe mechanical behavior of the rubber. Lobovsky et al. [82] and Yang et al. [83] used
hyperelastic models, which fitted the tensile test data by Antoci et al. [84], to simulate the rubber gate in this case,
and achieved better agreement with experimental results. The results by Yang et al. [83] suggested that by using
a linear elastic model, the stiffness of rubber gate is over-estimated, and the maximum horizontal displacement of

the gate is about 30% lower than that simulated by a hyperelastic model (e.g., Mooney–Rivlin model).
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Fig. 20. Fluid pressure and solid velocity at different time instances: dam-break flow through a rubber gate. The experimental results are
rom Antoci et al. [81].

Fig. 21. Horizontal displacement of the free end of rubber gate, compared with experimental data by Antoci et al. [81], and simulated
esults by Antoci et al. [81], Rafiee et al. [85], Yang et al. [83] and Khayyer et al. [86].

In this study, we apply an incompressible hyperelastic Mooney–Rivlin model to simulate the rubber gate. In this
odel, the strain energy function W reads:

W = C10 (I1 − 3) + C01 (I2 − 3) (52)

where I1 and I2 are the invariants of Cauchy–Green deformation tensor, C10 and C01 are material constants with the
relationship of 2(C10 +C01) = G, and G is the shear modulus. In this case, C10 = −0.277 MPa and C01 = 1.1 MPa
according to the tensile test data by Antoci et al. [84]. The density of rubber is 1100 kg/m3. The water domain is
discretized into 56 000 particles and the rubber gate into 80 elements. Fig. 20 presents fluid pressure distribution
and solid velocity distribution at the time instance of 0.04, 0.08, 0.12 and 0.16 s.

Fig. 21 shows the profile of horizontal displacement at the free end of the rubber gate, where experimental data
by Antoci et al. [81], and numerical results by Antoci et al. [81], Rafiee et al. [85], Yang et al. [83] and Khayyer
et al. [86] are presented for comparison. A good agreement with the results from the literature demonstrates the
accuracy and capability of the proposed method, in terms of structural deformation prediction in this free surface FSI
problem. In addition, we also conduct the simulation with a linear elastic model for the rubber gate. The maximum
horizontal displacement achieved is 0.034 m, which agrees well with the result by Yang et al. [83] using linear
elastic model (0.035 m).

For the second case, the initial configuration is shown in Fig. 22. The water column is initially placed in a water

tank. The tank is open at the top and has rigid walls in other boundaries. An elastic baffle is fixed at the bottom
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Fig. 22. Geometry of the dam break flow on an elastic baffle.

Fig. 23. Fluid pressure at different time instances: dam-break flow onto an elastic baffle.

all of the water tank. The water has density of 1000 kg/m3 and dynamic viscosity of 1 × 10−3 Pa s. The material
law used for the baffle is a linear elastic model with Young’s modulus of 1 MPa, Poisson’s ratio of 0, and density
of 2500 kg/m3. The water domain is discretized into 42 632 particles and the baffle into 60 elements.

Fig. 23 presents the wave front, fluid pressure distribution, and solid deformation with snapshots at increasing
time. Fig. 24 presents the time history of deflection of the baffle tip. Since there is no available experiment data
of this case, the predicted results from the proposed method are compared with other available numerical results in
the literature [42,85,87,88].

4.4. Application in water entry of a structure with airbags

This section presents a practical application of the proposed method in aerospace engineering. It is the water entry
process of a structure with airbags as shown in Fig. 25. The box consists of a cubic shell and internal components,
which are discretized using the shell–solid mixed elements. The four airbags are discretized by membrane elements,
and the ropes are discretized by truss elements. The material laws used for the structure in this case are linear elastic
constitutive laws. The box has Young’s modulus of 70 GPa, Poisson’s ratio of 0.3 and density of 2700 kg/m3, the
ope has Young’s modulus of 12 GPa, Poisson’s ratio of 0.2 and density of 750 kg/m3, and the membrane has
oung’s modulus of 1 GPa, Poisson’s ratio of 0.2 and density of 800 kg/m3. The airbags are inflated with an initial
ressure p0, and the pressure in the airbag pbag is calculated by the equation of state as follows:

γbag γbag
pbagΩbag = p0Ω0 (53)
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Fig. 24. Deflection of the elastic baffle tip, compared with other numerical results by FEM [87], PFEM [88], SPH [85] and CFEMP [42].

Fig. 25. FEM mesh of the structure with airbags: the spherical airbags are attached to the cube with four ropes.

here Ω0 and Ωbag are the initial and current volume of the airbag, respectively, γbag is the coefficient of the gas
tate equation. To calculate the volume of the airbag, the surface patches on the airbag are connected to the centroid
f the airbag to form tetrahedrons and pyramids. The volume of the airbag is thus the sum of all these tetrahedrons
nd pyramids.

Two cases are simulated. In both cases, the structure falls into the water with an initial speed of ∼50 m/s, and
n inclination angle of 90◦ (for Case I) and 45◦ (for Case II).

Figs. 26 and 27 present the water entry processes of the structure with airbags for Case I and II, respectively,
here the cavity interface is illustrated by the contour of cell tags. As shown in these figures, the box decelerates

ince it touches the water surface. Meanwhile, airbags move upwards rapidly thanks to the fluid force, collide with
he box, and then drag the box upward through the ropes between them. As a result, a large cavity is gradually
ormed, and the structure decelerates greatly until the closure of the cavity. It is recognized that for water entry
ase with 45◦ inclination angle, the structure rotates and finally sinks vertically, which is different from Case I.

For both cases, 8 million fluid particles are used for the fluid domain, and 2030 elements in total for the structure.
he simulations above were run in a personal computer with an Intel i7-9900 processor with eight cores. It took
bout 15 h for a physical time of 1.5 s, consisting of fluid time steps of 15 000 and the structural time steps of
bout ten times the former.

. Conclusions

In this article, an IFEMP (immersed finite element material point) method is proposed. It is a partitioned fluid–
tructure interaction coupling method, where an improved incompressible material point method is used for fluid
omain and FEM for structure domain, and the sharp interface immersed boundary method for the representation
f the fluid–structure interface. Moreover, weighted tracing points, an efficient cell tagging strategy, and particle
earranging method are developed. These techniques can efficiently and correctly tag the background cells, and
ffectively eliminate numerical cavities. Various numerical examples, including water entry problems, dam-break
ow through a rubber gate, onto an elastic baffle, and water entry of a structure with airbags, are presented with their
redicted results in line with theoretical, experimental and other numerical results in the literature. It is demonstrated

hat IFEMP is a powerful tool for solving free surface FSI problems.
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Fig. 26. Vertical water entry of the structure with airbags.
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Appendix. Logvinovich’s solution to cavity shape evolution

For water entry of high speed objects, Logvinovich [89] proposed the principle of independence of the cavity
sections expansion in the 1960s. According to this principle, in the cavity formed by a high speed object, along
the trajectory center line of the object, each cross section of the cavity expands independently, and its expansion
depends only on the state of the object at the moment when it passes through the cross section (including object
size, velocity, drag, pressure difference, etc.), and is not affected by the movement of the object at other moments.

The Logvinovich’s principle was verified by many experiments afterwards. For instance, Semenenko et al. [90]
used a projectile to penetrate a group of steel plates in a water tank. The results showed that in the fluid regions
24
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Fig. 27. Water entry of the structure with airbags with a 45◦ inclination angle.

separated by the steel plate, the cavity developed independently, which proved that the development of cavity
section was only related to the initial state. According to the Logvinovich’s principle, we can obtain the following
semi-theoretical solution of the cavity shape.

Let us use S(ι, t) to denote the section area of the cavity formed after water entry of the object, where ι is the
coordinate along the trajectory, and satisfies ι = 0 at the centroid of the object. t = 0 is for the moment the object
touches the water surface. Ṡ and S̈ are the speed and acceleration of the expansion of cavity section, and satisfy:

S̈ = −
β∆p
ρf

, β =
4πCv

a2 (A.1)

where a is a coefficient determined by experiments, which is usually 2 ∼ 2.5. ∆p is the pressure difference, ρf is
the fluid density, Cv is the drag coefficient of the object, which is a function of the cavitation number σv. Here we
use the following relation:

Cv = Cv0(1 + σv), Cv0 = 0.83 (A.2)

The expansion speed of the cavity section Ṡ is:

Ṡ = Ṡ0 − β

∫ t ∆p
dt, Ṡ0 =

2πCx R0u0 (A.3)

0 ρf a
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R

Fig. A.28. Cavity formed by the bullet.

where S0 is the initial section area, R0 is the initial section radius, u0 is the initial velocity, the cavity section area
S is:

S = S0 + Ṡ0t − β

∫ t

0

∫ t

0

∆p
ρ

dtdt (A.4)

Considering a constant u0 and an inclination angle θv shown in Fig. A.28, and using Lv to denote the total length
of the trajectory, the area of the cavity section is then:

S(ι, t) = S0 +
ι

u0

[
Ṡ0 − βg(Lv − ι) sin θv t

]
−

βgL sin θv

2u2
0

ι2 +
βg sin θv

2u2
0

ι3 (A.5)

where g is the gravitation acceleration, when θv = 90◦, the equation becomes the vertical water entry problem.
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