
Received: 5 April 2021 - Revised: 8 June 2021 - Accepted: 15 June 2021 - IET Microwaves, Antennas & Propagation
DOI: 10.1049/mia2.12172

OR I G INAL RE SEARCH PA PER

Theoretical and numerical studies on multi‐physical issues of
space parabolic membrane antennas

Ming‐Jian Li | Meng Li | Yu‐Fei Liu | Cheng‐Bo Cui

Qian Xuesen Laboratory of Space Technology, China
Academy of Space Technology, Beijing, China

Correspondence

Meng Li, Qian Xuesen Laboratory of Space
Technology, China Academy of Space Technology,
Beijing 100094, China.
Email: limeng@qxslab.cn

Funding information

National Natural Science Foundation of China,
Grant/Award Numbers: U1637207, U1937202,
52022075

Abstract
Front‐fed parabolic reflectors are among the most commonly used antennas in the in-
dustry. While in spaceborne applications, membrane reflectors are very promising due to
their lightweight and foldable features. However, considering the large size, small thick-
ness and low stiffness, solar radiation and microwave radiation will have considerable
influences on the antennas’ shape accuracy as well as the radiation characteristics. In this
article, a theoretical approach is presented to solve the multi‐physical effects of the
parabolic antenna. The deformation of the reflector is derived by the shallow shell theory,
taking into account the solar pressure, the microwave pressure and the thermal effects due
to solar and microwave heating. The far‐field electromagnetic radiation pattern is then
obtained by considering the deformation of the reflector. On the other hand, a numerical
approach combining the finite element method, the multi‐level fast multipole method,
and the large element physical optics is also presented. Numerical examples suggest good
agreement between the theoretical and numerical results. The methods have been applied
into the analysis of design models in the Space Solar Power Station project. Also, these
approaches can be directly extended into other space membrane reflector antennas.

1 | INTRODUCTION

Thin membrane antennas have been of great interest in the
past few decades, owing to the increasing demand for large
aperture space antennas [1–3]. The obvious merits of mem-
brane antennas are their large sizes and light weights, since
they can be folded into a small stowage volume and deployed
on orbit. Typical deploying methods include inflation [4],
elastic ribs‐driven method [5, 6], Shape Memory Polymer‐
inflation[7, 8], and electrostatic forming [9, 10], and the an-
tenna shapes after deployment are either parabolic or planar.
Despite extensive studies in the United States [11], Europe
[12], China [13], Japan [14] etc., practical applications in a
spaceborne environment are still very rare. One example is the
on‐orbit experiment of a 14‐m inflatable parabolic reflector
[15–17], as a part of the In‐Space Technology Experiments
Program (IN‐STEP). While on orbit, the deployment
sequence did not materialise as planned due to the underes-
timation of residual gas and strain energy in the stowed
structure, yet the torus and the struts completed deployment
in another way. Another example is the very recently launched

(2019) Radio Frequency Risk Reduction Deployment
Demonstration (R3D2) satellite for the US Defense Advanced
Research Projects Agency (DARPA) [18]. In this mission, a
2.25‐m reflectarray antenna has been used. The membrane
antenna is deployed by a frame structure instead of inflation.
Up until now, the studies of membrane antennas have faced
great challenges due to the difficulties in deploying, shape
accuracy maintaining, and many other aspects.

The vision of harnessing solar power from space for
terrestrial markets inspires continuous efforts in Space Solar
Power Station (SSPS) projects [19–22]. Among these projects,
the SSPS‐OMEGA (Orb‐Shape Membrane Energy Gathering
Array) concept [23] is our focus, and in this project, a high‐gain
and large‐aperture (100 m) antenna is one of its core compo-
nents. The parabolic membrane antenna thus becomes a
promising potential design. However, the large size and low
stiffness feature of a membrane antenna makes it very sensitive
to external forces. The coupling effects of the sunlight field,
electromagnetic field, temperature field and the structural field
thus become one of the most important issues in the antenna
design and analysis work.
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Investigations on multi‐physical issues of antennas are
mainly conducted by numerical simulations [24–28], and
usually the surface distortion influence on radiation charac-
teristics is the main concern. Zhang et al. [29] studied the
microwave pressure on a parabolic antenna and the influ-
ence of shape distortion on the radiation pattern. Lu et al.
[30] numerically investigated a large planar phased‐array
antenna in a space thermal environment, and introduced a
shape adjustment method that utilises cables as actuators.
Wang et al. [31] investigated coupled structural–
electromagnetic relations of the planar rectangular active
phased‐array antennas and presented the combined in-
fluences of the radiated element numbers, mechanical
distortion and element position random error on the an-
tennas’ electromagnetic performances. Guo et al. [32] pre-
sented finite element analysis on thermal–structural effects
of the deployable AstroMesh antenna under extreme heat
loads. Fan et al. [33] studied the influences of wrinkle
distortion caused by tension cables on the electromagnetic
performance of an active membrane phased‐array antenna in
P‐band. Other studies can also provide useful references,
such as studies on non‐linear dynamics under thermal ex-
citations [34, 35], the structure–electronic synthesis design
[36], the deployment analysis of antennas [37], and multi‐
physical coupling effects in other regions [38–40].

The coupled studies of light, electromagnetic, temperature
and structural fields are very rare in the literature. Among the
current antenna studies, numerical simulation is the main
approach. In this article, a theoretical solution to the coupled
fields in parabolic antennas has been derived, and numerical
simulations are also presented. The two approaches are in good
agreement and can be used as a benchmark for future antenna
analysis.

The remainder of the article is organised as follows: In
Section 2, we present the theoretical solution to the reflector’s
deformation as well as the far‐field pattern, during which
process, the solar radiation, the microwave radiation and the
thermal effects have been considered. In Section 3, the
sequentialsolving numerical method is presented. Then, several
practical cases have been solved based on the SSPS project.
Good agreement between the theoretical and the numerical
approaches has been achieved, and the effects of each field
have been analysed. Conclusions are made in Section 4.

2 | THEORETICAL ANALYSIS

2.1 | Solar radiation on the antenna

A typical front‐fed parabolic reflector antenna is shown in
Figure 1. Two coordinate systems have been established at the
centre of the reflector: the Cartesian system Oxyz and the
spherical system Orφθ. In Oxyz, the configuration equation of
an ideal parabolic reflector is written as follows:

x2 þ y2 ¼ 4f z ð1Þ

where f is the focal length of the antenna. The radius of the
projected antenna’s circular aperture on the plane Oxy is
defined as R. The unit normal vector on the reflector surface is
denoted by n and can be obtained by taking the derivatives of
Equation (1):

n¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðzþ f Þ

p ð−xêx − yêy þ 2f êzÞ ð2Þ

The reflector receives solar radiation in space and deforms
under its pressure. On defining the azimuth and altitude angles
of the sun that are φs and θs, respectively, the unit vector rs
pointing to the sun is then as follows:

r s ¼ sin θscosφsêx þ sin θssinφsêy þ cos θsêz ð3Þ

where êx, ey and êz are base vectors in the Cartesian coor-
dinate system Oxyz.

The total radiation power of the sun is known as
Psun = 3.805 � 1026 W, and its power density at the Earth is as
follows:

W e ¼
Psun

4πL2
e

≈ 1353 W ⋅ m−2 ð4Þ

where Le is the Earth–Sun distance. Since the orbit height of
the antenna is negligible compared with the Earth–Sun dis-
tance, it is acceptable to regard the solar radiation power
density We as uniform at any position of the orbit.

Despite the existence of complicated diffuse reflection and
secondary reflection of the sunlight, let us simplify the solar
power density as follows:

W e ¼W s þW sa ð5Þ

where Ws in the solar power density reflected by the antenna,
which leads to solar pressure, and Wsa is the solar power
density absorbed by the antenna, which causes thermal
deformation.

According to Einstein’s theory of relativity, the energy
Ep of a beam of photons can be expressed as Ep = Ppc,
since photons have zero rest mass. Here, Pp denotes the
momentum of photons and c is the speed of light. On a

F I GURE 1 The Cartesian and spherical coordinate systems on the
reflector antenna
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small area dA of the antenna, the solar energy reflected
within time dt is dEp = Wsdt dA. Considering the
momentum change of photons to be dPp = dEp/c, the
solar pressure per area is then obtained by the mo-
mentum theorem as dPp/(dt dA) = Ws/c. For a specular
reflection case, taking into account the momentum of
incoming and reflected light, the solar pressure ps will be
as follows:

ps ¼ −2
W s

c
cos2βs ð6Þ

where βs is the incident angle of light beams (see Figure 2) and
is expressed by the following:

cos βs ¼ r s ⋅ n¼
−x sin θs cosφs−y sin θs sinφsþ2f cos θs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ 4f 2
q

ð7Þ

where rs is in Equation (3) and n is in Equation (2).
Equation (6) only considers the sunlight coming in from

the front of the antenna. To take into account the direction of
the solar pressure, we can rewrite Equation (6) into the
following form:

ps ¼ −2
W s

c
cos2βstanhðζcosβsÞ ð8Þ

The hyperbolic tangent function introduced here is to
distinguish the direction of the pressure. A tunable coeffi-
cient ζ has been introduced here to control the steepness of
the hyperbolic tangent function. Typically, given ζ ≥ 100,
the hyperbolic function is very similar to the sign function.
Unlike the sign function, this function is differentiable and
is convenient for the following derivation: The solar pres-
sure satisfies ps < 0 when βs ∈ (0, π/2) and ps > 0 when
βs ∈ (π/2, π). This means Equation (8) can describe the
sunlight from the front as well as from the back of the
antenna, in a unified formulation.

2.2 | Electromagnetic radiation on the
antenna

The antenna is also illuminated by the electromagnetic wave
from the feed (see Figure 2). The penetration depth of the
wave is expressed as the skin depth.

δm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðωμmσmÞ

p

where ω is the angular frequency of the electromagnetic wave,
μm is the magnetic permeability, and σm is the electric con-
ductivity. In the scope of this article, δm is negligible due to the
high frequency of the incoming microwave. For a typical an-
tenna with a polyimide base layer and a metal layer, the skin
depth of the metal layer is usually of micron order. Therefore,
the microwave radiation pressure can be regarded as the sur-
face load on the reflector.

The feed of the parabolic reflector is usually a horn an-
tenna and its radiation pattern is as follows:

FðξÞ ¼ cosqξ ð9Þ

where q is a constant coefficient and ξ is the angle between the
radiation path and the z‐axis (Figure 2). On defining the
maximum microwave power density from the feed to be Wmx,
it can be divided into the following:

Wmx ¼Wm þWma ð10Þ

where Wm in the maximum power density reflected by the
antenna, which is the major part and leads to the microwave
pressure on the antenna. Wma is the maximum power density
absorbed by the antenna, which causes thermal deformation.

Similar to Equation (6), the microwave radiation pressure is
written as follows:

pm ¼ −2
Wm

c
cos2q ξ cos2 βm ð11Þ

where βm is the incident angle of the radiation (see Figure 2).
The angles can be easily obtained by means of the geometric
relations and are written as follows:

cos ξ¼
f − z
f þ z

; cos2 βm ¼
f

f þ z
ð12Þ

Unlike the solar pressure in Equation (8), the direction of
the microwave remains unchanged and pm is always negative.
The microwave pressure is finally the following:

pm ¼ −2
Wm

c
f ðf − zÞ2q

ðf þ zÞ2qþ1
ð13Þ

From the above analysis, the total pressure p on the
reflector surface becomes the combination of the solar pres-
sure and the microwave pressure:

F I GURE 2 Sunlight pressure and microwave pressure on the reflector
antenna
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p¼ ps þ pm ð14Þ

2.3 | The antenna’s temperature affected by
solar and microwave radiation

The reflector receives heat from the solar and microwave ra-
diation and it also radiates heat into space. The microwave
heating power density remains unchanged during operation,
while the solar heating varies due to the changing incident
angle and the blockage of the Earth. The current temperature
is defined as T1 in the reflector, while the reference (initial)
temperature is T0. Hence, the following equation is satisfied:

Wsacos βs þWmacos2qξ cos βm − σTðη1 þ η2ÞT
4
1 ¼ κ

∂T 1

∂n
ð15Þ

where κ is the thermal conductivity, η1 and η2 are emissivity of
the upper and lower surfaces, and σT = 5.67 � 10−8 W/m2/K4

is the Stefan–Boltzmann constant. The first term in Equa-
tion (15) expresses the heat flux absorbed from the microwave,
the second term is the solar heating, and the third term is the
heat lost into space. Due to the very small thickness of the
reflector, T1 can be treated as uniform along the z‐direction,
and the right‐hand‐side term in Equation (15) is then zero.
Assuming the temperature change to be T = T1 − T0, it hence
meets the following:

T ¼
Wsa cos βs þWma cos2qξ cos βm

σTðη1 þ η2Þ

� �1
4

− T 0 ð16Þ

2.4 | The antenna’s deformation in the light
and electromagnetic fields

Due to a small sag–diameter ratio for a typical antenna (far less
than 0.2), the problem arises with achieving the solution to a
shallow thin shell’s deformation under the non‐axisymmetric
pressure p and the temperature change T.

We take the assumptions of linear elastic, isotropic, small
deformation and no pre‐stresses. Then, by using the non‐
moment theory of thin shells, we first have the equations of
geometry as follows:

εx ¼
∂u
∂x
þ

1
2f

wþ αT

εy ¼
∂v
∂y
þ

1
2f

wþ αT

εxy ¼
∂u
∂y
þ
∂v
∂x

8
>>>>>>>><

>>>>>>>>:

ð17Þ

where u, v, w are the x‐, y‐ and z‐displacements, and ɛx, ɛy and
ɛxy are strains. 1/(2f ) is the curvature and α is the coefficient
of linear thermal expansion.

The equations of physics are as follows:

Nx ¼
Eh

1 − μ2
εx þ μεy
� �

Ny ¼
Eh

1 − μ2
εy þ μεx
� �

Nxy ¼
Eh

2ð1þ μÞ
εxy

8
>>>>>>>><

>>>>>>>>:

ð18Þ

where E, μ and h are the Young’s modulus, the Poisson’s ratio
and the thickness of the shell, respectively. Nx, Ny and Nxy are
internal forces.

The equations of equilibrium are as follows:

∂Nx

∂x
þ
∂Nxy

∂y
¼ 0

∂Ny

∂y
þ
∂Nxy

∂x
¼ 0

1
2f
ðNx þ NyÞ ¼ p

8
>>>>>>>><

>>>>>>>>:

ð19Þ

By substituting Equation (17) into Equation (18) and then
by substituting Equation (18) into Equation (19), we will get
the displacement differential equations:

8
>>>>>>>>><

>>>>>>>>>:

2
∂2u
∂x2
þ ð1−μÞ

∂2u
∂y2
þð1þμÞ

∂2υ
∂x ∂ y

þ
1
f
ð1þμÞ

∂w
∂x
¼ −2ð1þμÞα

∂T
∂x

�
20
�

2
∂2υ
∂y2
þ ð1−μÞ

∂2υ
∂x2
þð1þμÞ

∂2u
∂x ∂ y

þ
1
f
ð1þμÞ

∂w
∂y
¼ −2ð1þμÞα

∂T
∂y

�
21
�

Eh
1 − μ

1
2f

�
∂u
∂x
þ
∂υ
∂y
þ

1
f
w
�

¼ p −
EhαT
f ð1 − μÞ

�
22
�

For the simply supported edge, the boundary conditions
are as follows:

ujϱ¼R ¼ 0; vjϱ¼R ¼ 0; wjϱ¼R ¼ 0 ð23Þ

where ϱ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the radial coordinate.

By taking the partial derivatives to Equation (22) with
respect to x and y and by multiplying them by (1 + μ) and
substracting them by Equations (20) and (21), we will get the
following:

∂2u
∂x2
þ
∂2u
∂y2
¼ −

2f ð1þ μÞ
Eh

∂p
∂x

∂2v
∂x2
þ
∂2v
∂y2
¼ −

2f ð1þ μÞ
Eh

∂p
∂y

8
>>><

>>>:

ð24Þ

1628 - LI ET AL.



By using Taylor’s expansion at (0, 0) to the right‐hand sides
of Equation (24), and keeping only linear terms, Equation (24)
can be rewritten as follows:

8
>><

>>:

∇2u ¼ −
2f ð1þ μÞ

Eh
�
g1 þ g2xþ g3y

� �
25
�

∇2υ ¼ −
2f ð1þ μÞ

Eh
�
g4 þ g5xþ g6y

� �
26
�

where

g1 ¼
∂pð0; 0Þ
∂x

; g2 ¼
∂2pð0; 0Þ
∂x2

; g3 ¼
∂2pð0; 0Þ
∂x∂y

g4 ¼
∂pð0; 0Þ
∂y

; g5 ¼
∂2pð0; 0Þ
∂y∂x

; g6 ¼
∂2pð0; 0Þ
∂y2

ð27Þ

In order to get u and v, the Poisson’s equations (25) and
(26) need to be solved. u can be divided into the following:

u¼ �uþ u� ð28Þ

where u* is a special solution to Equation (25) as follows:

u� ¼ −
2f ð1þ μÞ

Eh
1
4
g1x

2 þ
1
4
g1y

2 þ
1
6
g2x

3 þ
1
6
g3y

3
� �

ð29Þ

and �u meets the following:

∇2�u¼ 0
�ujϱ¼R ¼ −u�jϱ¼R

�

ð30Þ

The solution to Equation (30) in the polar coordinate
system Oϱϑ is as follows:

�uðϱ; ϑÞ ¼ C0 þD0 ln ϱþ
P∞

m¼1
ϱm Am cosmϑþ Bm sinmϑð Þ

þ
P∞

m¼1
ϱ−m Cm cosmϑþDm sinmϑð Þ

ð31Þ

On substituting the boundary condition in Equation (30)
into Equation (31) and on comparing coefficients, the x‐
displacement is obtained as follows:

u¼ −
f ð1þ μÞ
4Eh

x2 þ y2 − R2� �
2g1 þ g2xþ g3y
� �

ð32Þ

Similarly, the y‐displacement is as follows:

v¼ −
f ð1þ μÞ
4Eh

x2 þ y2 − R2� �
2g3 þ g4xþ g5y
� �

ð33Þ

On substituting Equations (32) and (33) into Equation
(22), the z‐displacement is finally the following:

w ¼
2f 2ð1 − μÞ

Eh
pþ

f 2ð1þ μÞ
4Eh

ð3g2 þ g6Þx
2�

þðg2 þ 3g6Þy
2 þ ð2g3 þ 2g5Þxyþ 4g1x

þ 4g4y − ðg2 þ g6ÞR
2� − 2f αT

ð34Þ

where g1 ∼ g6 are given in Appendix A.

2.5 | Radiation pattern of the deformed
antenna

The far electrical field of an ideal parabolic reflector can be
derived by the aperture plane method, using Fourier’s trans-
form. In Figure 3, the deformation w obtained above needs to
be taking into account. Since the z‐displacement is the main
concern here, and its major influence to the radiation charac-
teristics is through the phase change, the far electrical field
considering the reflector’s deformation is then written as
follows:

Ef ðθf ;φf Þ ¼ ∫ 2π
0 ∫ R

0 E0ðρa;ϕaÞ ⋅ exp jðφs þ φrÞ½ �

⋅ exp jkρasin θf cos ðφf − ϕaÞ
h i

ρadρadϕa

ð35Þ

where k = 2π/λ and λ is the wave length. E0 satisfies the
following:

E0ðρa;ϕaÞ ¼
Fðξ;ϕaÞ

r0
ð36Þ

where F is the radiation pattern of the feed given in Equa-
tion (9). r0 = z + f is the distance of the radiation path. On
substituting Equations (12) and (9) into Equation (36) and then
transforming it to the polar coordinate system, we will get the
following:

E0ðρa;ϕaÞ ¼
4f 4f 2 − ρ2

a

� �q

4f 2 þ ρ2
a

� �qþ1 ð37Þ

F I GURE 3 The deformation of the antenna and its influence on the
radiation path error
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The system error and random error are denoted by φs and
φr, respectively, in Equation (35). Here, we only consider the
influence of the antenna’s deformation w; thus,

φs þ φr ≈ φs ¼ kwð1þ cos ξÞ ð38Þ

On substituting Equations (38) and (34) into Equation (35),
the electrical field change caused by the antenna’s deformation
will be obtained. To be noted, due to its complexity, Equa-
tion (35) can be numerically achieved by quadrature methods.

3 | NUMERICAL APPROACH AND
APPLICATIONS

3.1 | Numerical methodology

The numerical simulation is based on a sequential solving
framework, which has been presented in Figure 4. First, the
solar radiation pressure, the microwave pressure, and the
temperature variation are obtained by the above mentioned
equations. Then, in order to solve the deformation of the
reflector, the finite element method (FEM) is applied and 8‐
node membrane elements are used. The pressure p is applied
as surface loads on the elements and the temperature change T
is applied as body loads. The edge is simply supported, which
means all three translational degrees of freedom are fixed.

The deformation of the reflector will be solved by ANSYS
Mechanical, once w is obtained on the structural grids. It will
be interpolated to the electromagnetic grids and will be solved
by FEKO afterwards.

In order to solve the high‐frequency electromagnetic
problem, the radiation pattern of the feed is first simulated.
The multi‐level fast multipole method (MLFMM) is used to
deal with the feed, with good efficiency and accuracy. Since the
reflector is electrically large, the large element physical optics
(LEPO) method [41, 42] is then used to solve the reflector.
The coupling effects are considered by iterative methods be-
tween the MLFMM and LEPO solutions.

3.2 | The space membrane antenna model

As applications to the theoretical and numerical approaches
above, let us consider several practical cases. These cases are
based on the SSPS project; however, the methods can be
extended to any space parabolic membrane antennas under
similar working conditions.

The model is a parabolic membrane reflector antenna
with a horn feed (Figure 5). The radius of the reflector is
R = 7 m, the focal length is f = 2R, and the thickness is
h = 10 μm. Kapton is used as the base material of the
reflector; it has a Young’s modulus of 2.5 GPa, a Poisson’s
ratio of 0.3, and a coefficient of thermal expansion

F I GURE 4 The numerical simulation process of
the coupled system
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α = 2 � 10−5 K−1. The emissivity of heat radiation is 0.9.
The absorbed solar power density is Wsa = 13.5 W/m2,
which is about 1%We. The maximum microwave power
density is Wm = 1 MW/m2 and the absorbed microwave
power density is Wma = 10 W/m2.

The feed is a conical horn antenna, and it works at the
frequency 5.8 GHz. Its waveguide has a radius of 0.51λ and a
length of 2.2λ. The horn’s top and base radii are λ and 0.65λ,
respectively, and its length is 3.05λ. The horn is discretised into
about 15,000 grids (Figure 5). The directivity calculated has
been presented in Figure 6. In theoretical approach, when
q = 6.5, Equation (9) provides a result that is very similar to
that of the numerical simulation.

Both the combined solar and microwave pressure p and
the temperature change T are applied on the structural model.
A total number of 6400 membrane elements are used in the
FEM solution process. Considering the incident angles φs = 0
and θs = 0.4π, the deformed shape of the reflector is as given
in Figure 7, and the deformation w is given as contours in
Figure 8. It can be seen that the theoretical solution is in line
with the numerical result. The maximum theoretical
displacement is 0.061 m and the maximum numerical

displacement is 0.064 m. The relative error between the two
methods is 4.7%.

The normalised radiation pattern is shown in Figure 9. As
can be seen, in the ideal undeformed case, the theoretical and
the numerical results are very close. For the deformed
reflector, the theoretical and the numerical methods also pro-
vide very similar results on the main lobe, while for the side
lobes, slight differences can be found. The differences may
come from the approximation of the theory as well as the
numerical model errors. However, this kind of difference is
totally acceptable.

Figure 10 compares the directivities of the antenna before
and after deformation. The gain decreases by 6.8 dB and the
beam width also increases. The radiation characteristics
considerably deteriorate. This means that the multi‐physical
issues must be taken into account in the design process of
the space membrane antenna.

3.3 | Solar pressure influences

In order to investigate the influence of each contributor, let us
first consider the solar pressure. Assuming the thickness
h = 5 μm, the radius R = 50 m, and incident angles φs = 0,
θs = 0.3π, the deformation of the reflector is as shown in
Figure 11. The relative error of the central point displacement
is 2% and the relative error of the maximum displacement is
16% between the theoretical and numerical results. The dif-
ferences may come from both the theoretical assumptions and
the FEM errors for very thin structures. Assuming φs = 0,
θs = 0, 0.05π, 0.1π, 0.2π, 0.3π, 0.4π, the deformations are as
shown in Figure 12. As can be seen, the theoretical and nu-
merical results agree well. Also, the deflection tends to be
larger when the incident angle is smaller. The solar pressure is
of μPa order and contributes μm order deformation, even for a
very large antenna. In the R = 7 m case, the deformation is
even smaller and the radiation pattern will not be affected
much by the solar pressure alone.

F I GURE 5 The mesh of the horn feed and the reflector

F I GURE 6 Directivity of the feed: comparison between the theoretical
equation (9) with q = 6.5 and the numerical simulation of a conical horn
antenna

F I GURE 7 The deflection of the reflector under solar pressure with
an incident angle 0.3π; the theoretical result and the simulation are in good
agreement
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3.4 | The microwave pressure influences

Let us now consider only the microwave pressure. For
Wm = 1 MW/m2, the microwave pressure is of mPa order.
Assuming the thickness h = 5 μm, the radius R = 50 m,
and q = 1, the deformation of the reflector is then as
shown in Figure 13 and the relative error of the maximum
displacement is 3.6% between the theoretical and numerical
results. The radiation pattern of the reflector is shown in
Figure 14. As can be seen, for large and thin membranes,
the microwave pressure can lead to considerable shape
distortion and radiation pattern variation. In the SSPS
project, microwave power density can be very large; thus,
the microwave pressure effects needs to be considered under
certain circumstances. Actually, the thermal deformation is

the most important factor here, and the temperature is
affected by solar and microwave heating. Typically, consid-
ering a high reflectivity in this article, the temperature of the
reflector will reach 85 K under only solar radiation and will
reach 105 K under microwave heating. When the reflectivity
is smaller, the temperature will be much higher, and this
means a careful temperature‐control design is very necessary
in the current antenna design work.

4 | CONCLUSION

In this article, we have presented a theoretical approach as well
as a numerical approach to solve the multi‐physical problem in
space membrane parabolic reflector antennas. The light field,

F I GURE 8 Contours of the displacement w, the theoretical distribution, the numerical results and the relative error

F I GURE 9 The theoretical and the numerical radiation patterns of the reflector. Absolute error between the two methods are presented. The side‐lobe
error is large because phase difference exists. Considering the maximum side‐lobe level, the error is less than 5 dB
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electromagnetic field, temperature field and structural field are
coupled as shown in Figure 15. Solar radiation leads to both
pressure and heating, and thus structural deformation. Mi-
crowave radiation also causes pressure and thermal effects, and

directly and indirectly affects the structure. The structural
deformation finally changes the electromagnetic radiation
characteristics.

As applications of the methods above, membrane antennas
in the SSPS project have been analysed. Results suggest good
agreement between the theoretical and the numerical solutions.
In these cases, the thermal effects of solar and microwave
heating contribute the most to the structural deformation and

F I GURE 1 2 Deflections of the reflector under solar pressure with
different incident angles: 0, 0.05π, 0.1π, 0.2π, 0.3π and 0.4π

F I GURE 1 3 The deflection of the reflector with a radius 50 m under
microwave pressure withWm = 1 MW/m2 and q = 1; the theoretical result
and the simulation are in good agreement

F I GURE 1 4 The radiation pattern of the reflector with a radius 50 m
under microwave pressure with Wm = 1 MW/m2 and q = 1

F I GURE 1 5 The coupling of multi‐physical fields

F I GURE 1 0 Directivities of the reflector before and after
deformation

F I GURE 1 1 The deflection of the reflector with a radius 50 m under
solar pressure with an incident angle 0.3π; the theoretical result and the
simulation are in good agreement
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radiation pattern deterioration. The microwave pressure also
leads to considerable deformation, while the influence of the
solar pressure is minimal.

The theoretical solution can be used as a benchmark for
validation and verification purpose of future numerical
methods. Both the theoretical and numerical approaches in this
article can be extended into other space parabolic reflector
studies, considering the coupling effects of light, temperature,
electromagnetic, and structural fields.
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APPENDIX A

USEFUL EQUATIONS AND COEFFICIENTS
The complete form of the solar pressure is as follows, which
can be obtained by substituting Equation (7) into Equation (6):

ps¼ −2
W s

c
ðx sin θscosφs þ y sinθssinφs − 2f cos θsÞ2

x2 þ y2 þ 4f 2

⋅ tanh ζ
−x sin θscosφs − y sin θssinφs þ 2f cos θs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ 4f 2
q

0

B
@

1

C
A

ðA:1Þ

The Taylor’s expansion to function H(x, y) at (x0, y0) is as
follows:

Hðx; yÞ ¼
X∞

n¼0

1
n!

x
∂
∂x
þ y

∂
∂y

� �n

Hðx0; y0Þ ðA:2Þ

The coefficients g1 ∼ g6 given in Equation (27) depend on
a specific form of p. Assuming that the sunlight comes in from
the front side of the reflector, Equation (6) is used to describe
the solar pressure. g1 ∼ g6 are then as follows:

g1¼
2W scosφssin θscos θs

cf
ðA:3Þ

g2¼
W s cos2θs − cos2φssin

2θsð Þ þWmð4qþ 1Þ
cf 2

ðA:4Þ

g3¼ −
Wssinφscosφssin

2θs
cf 2

ðA:5Þ

g4¼
2Wssinφssin θscos θs

cf
ðA:6Þ

g5¼ g3 ðA:7Þ

g6¼
W s cos2θs − sin2φssin

2θsð Þ þWmð4qþ 1Þ
cf 2

ðA:8Þ

If the direction of the incoming sunlight is taken into ac-
count, Equation (8) will be used. g1 ∼ g6 are then in the following
forms:

g1¼
W s

cf
cosφssin θscos θsζcos θs

þ sinhð2ζcos θsÞ ⋅ sech2ðζcos θsÞ

ðA:9Þ

g2¼
W s

2cf 2
f2tanhðζcos θsÞcos2φssin

2θsζ2cos2θs

⋅ sech2ðζcos θsÞ − 1þ cos2θs þ ζcos θs

⋅ ðcos2θs − 4 cos2φssin
2θsÞsech2ðζcos θsÞg

þ
ð4qþ 1ÞWm

cf 2

ðA:10Þ

g3¼
W s

cf 2
sinφscosφssin

2θsf−tanhðζcos θsÞ

þ ζcos θs ζcos θstanhðζcos θsÞ − 2½ �

⋅ sech2ðζcos θsÞg

ðA:11Þ

g4¼
W s

cf
sinφssin θscos θsfsinhð2ζ cos θsÞ

þ ζcos θsg ⋅ sech2ðζ cos θsÞ

ðA:12Þ

g5¼ g3 ðA:13Þ

g6¼
W s

2cf 2
f2tanhðζ cos θsÞsin2φssin

2θsζ2cos2θs

sech2ðζ cos θsÞ − 1þ cos2 θs þ ζ cos θs

⋅ ðcos2 θs − 4sin2φssin
2 θsÞsech2ðζ cos θsÞg

þ
ð4qþ 1ÞWm

cf 2

ðA:14Þ

In any circumstances, Equations (A.9)–(A.14) are suggested to
be used, since they can deal with the sunlight coming in from
the front as well as from the back of the reflector. However,
when the angle satisfies θs < arctan(4f/R) ≈ 0.46π, Equations
(A.3)–(A.8) can be used for simplicity.
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