
Computers and Mathematics with Applications 81 (2021) 649–663
Contents lists available at ScienceDirect

Computers andMathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Interaction between free surface flow andmoving bodieswith
a dynamicmesh and interface geometric reconstruction
approach
Ming-Jian Li
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

a r t i c l e i n f o

Article history:
Available online 17 February 2020

Keywords:
Fluid structure interaction
Multiphase flow
Dynamic mesh
VOF
PLIC

a b s t r a c t

To investigate the fluid-rigid body interaction issues with free surfaces, a numerical
approach has been developed. This algorithm is in an arbitrary Lagrangian–Eulerian
description and Volume of Fluid (VOF) framework, using dynamic unstructured mesh to
solve the coupled system. The fluid–solid interface uses partitioned Dirichlet–Neumann
iterations with Aitken’s relaxation. For the two-phase fluids part, an interface geometric
reconstruction approach has been applied to accurately capture the free surfaces. This
piecewise linear interface calculation (PLIC) based method uses Newton’s iteration to
efficiently reconstruct interfaces on an unstructured mesh, and applies an un-split
scheme to transport variables. The algorithm has been successfully implemented in
open source code OpenFOAM R⃝, and was compared with the latter’s built-in solver using
interface compression method to deal with free surfaces. Numerical results suggest that
our solver has better accuracy on multiphase flow problems, while the previous solver
fails to obtain correct interfaces. Moreover, the capacity of accurately solving fluid-rigid
body interaction problems with free surfaces has been achieved. Validation cases are
provided for fluid–structure interaction problems with and without free surfaces, and
results are in accordance with analytical and experimental data from the literature. The
algorithm and solver in this paper, can be applied on fluid–structure interaction cases
with free surfaces in the future, such as sloshing and water entry problems.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Multiphase flow [1–3] and fluid–structure interaction (FSI) [4–6] are both challenging topics, which are extensively
concerned in industrial and research areas, such as aeronautical engineering [7], biomechanics [5,6], heat transfer
enhancement, bubble dynamics [8–10] and nanofluids [11–13]. The multiphase-FSI combined problems, considering fluid–
structure interaction effects together with free surfaces evolutions, are of great interest and also complicated. Applications
of such problems are numerous in both fundamental and applied research areas. To name a few, we have: the sloshing
of liquid [14] and the damping of baffles in storage tanks [15]; the safety issues in spacecraft water landing [16]; the
slamming forces on ships and other marine structures [17]; the ship-wave interaction problems [18]; the water entry of
projectiles, and its under-water ballistic stability with cavitation [19].

On the numerical simulation of multiphase flow cases, the key issue is to accurately capture/track the free surfaces.
The Volume of Fluid (VOF) method by Hirt et al. [20] is extensively applied in the CFD community. Other widely used

E-mail address: mingjian_li@163.com.
https://doi.org/10.1016/j.camwa.2020.01.020
0898-1221/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2020.01.020
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2020.01.020&domain=pdf
mailto:mingjian_li@163.com
https://doi.org/10.1016/j.camwa.2020.01.020


650 M.-J. Li / Computers and Mathematics with Applications 81 (2021) 649–663
algorithms are level-set method by Osher et al. [21]; coupled level-set and volume of fluid (CLSVOF) method by Sussman
et al. [22]; and front tracking method by Tryggvason et al. [23]. Traditional VOF method has difficulties in preserving sharp
interfaces, while level-set method has the drawback of non-conservation. However, these problems have been overcome
to a certain extent with the constant development of algorithms.

Numerical methods for FSI, according to spatial description of fluid domain, fall into three major categories: (1) the
Eulerian framework, mainly the immersed boundary method [24–26] and the cut-cell method [27,28]; (2) the Lagrangian
framework, usually mesh-free and particle based methods, e.g., the smoothed particle hydrodynamics (SPH) method
[29–33], the moving particle semi-implicit (MPS) method [34–36], and the material point method (MPM) [37–39]; (3) the
coupled framework, mainly the arbitrary Lagrangian–Eulerian (ALE) method [7,40–43], and the Over-set grid method [44].

For interaction problems between viscous, incompressible two-phase fluids and moving rigid bodies, which is con-
cerned in this paper, a natural idea is to couple the VOF method and ALE description, since body-fit mesh in ALE method
can explicitly distinguish the fluid–structure interface, thus avoids the complicated construction of three-phase interfaces
in one computational cell. However, the inherent nonlinearity of PDEs in this problem still causes great difficulties for
numerical simulations.

In this paper, we focused on the interaction issues between free surface flow and moving rigid bodies applying the
coupled VOF-ALE framework. The numerical work was based on the open source code OpenFOAM R⃝ [45], which has been
widely used due to its robustness and MPI feature. The VOF solver interFoam with interface compression method was
built-in, however, we found it has great difficulties on free surface simulations of certain problems, other researchers
also reported this problem [46]. We thus implemented our algorithm in VOF-PLIC (piecewise linear interface calculation)
framework for unstructured grids to overcome this problem. The solver we developed was tested and compared with
previous solver interFoam. Moreover, the VOF algorithm has been extended to an ALE framework, using dynamic mesh
to simulate fluid-rigid body interaction problems with free surfaces. Numerical test cases have been presented using this
solver, and suggest good accuracy and robustness.

The remainder of the paper is organized as follows. In Section 2, we present the numerical algorithm in detail,
including the interface reconstruction method and fluid-rigid body interaction iterative scheme. The interface compression
method is also introduced for comparison. In Section 3, validation cases are presented, including Zalesak’s test and shear
deformation test, to test the capability of our solver for two-phase interface capturing. A comparison has also been made
to the previous solver in OpenFOAM R⃝. Section 4 presents validation cases for both two-phase flow problem and fluid–
structure interaction problem. Results suggest good accuracy of our solver, by comparing with those in the literature.
In Section 5, we present application in fluid-rigid body interaction problem with free surfaces, mainly the water entry
problem, to show the capability of our solver in complex coupled problems with unstructured mesh. Section 6 presents
concluding remarks and discussion.

2. Numerical methodology

2.1. Mathematical formulation

The numerical methodology in this paper, is developed for fluid–structure interaction problems between two-phase
fluids and moving rigid bodies. The mathematical formulations are as follows.

In the computational time domain t ∈ [0, T ], let Ω t
f indicate the fluid spatial domain and Ω t

s the solid region. Generally,
the Lagrangian description is used for solid region and the Eulerian framework is suitable for fluid domain. However, to
better describe the FSI problem in this paper’s scope, the fluid computational domain is moving or deforming in accordance
with the rigid body movement. Hence, an arbitrary Lagrangian–Eulerian (ALE) mapping function At is defined in the three
dimensional fluid domain as

At
: Ω0

f → Ω t
f ⊂ R3, x = At (X) ∈ Ω t

f , X ∈ Ω0
f (1)

where Ω0
f and Ω t

f respectively denote the initial and current spatial configurations, while x and X indicate coordinates
in each of their coordinating systems.

Considering a viscous, incompressible, immiscible two-fluids system, with the ALE description above, the Navier–Stokes
and the continuity equations are written as:

ρ
∂u
∂t

+ ρ
(
u − ug

)
· ∇u = −∇p + µ∇

2u + ρg + σκδsn in Ω t
f × [0, T ] (2)

∇ · u = 0 in Ω t
f × [0, T ] (3)

where ρ, µ, σ respectively denote the fluid density, dynamic viscosity, and surface tension coefficient. u describes the
fluid velocity field, p denotes fluid pressure, and g is gravitational acceleration. In the surface tension term, n is the two-
phase interface normal vector, κ is the interface curvature, and δs is Dirac delta function, to transform surface tension into
volumetric force in a continuum surface force (CSF) model [47]. In the ALE framework, ug is the velocity of the referential
system. In fact, the referential system is usually attached to the fluid computational grids. Thus, ug is also the grid velocity,
and u = ∂At (X)/∂t is satisfied.
g
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In a typical VOF approach, a volume fraction function f (x, t) is defined to distinguish two fluids in the mixture system.
n each discretized control volume, f ∈ [0, 1] is satisfied, and f = 1 means the control volume is full of phase-1 fluid. The
ensity ρ and viscosity µ of the mixture are written as

ρ = f ρ1 + (1 − f )ρ2 (4)

µ = fµ1 + (1 − f )µ2 (5)

where subscripts 1,2 indicate each phase of the fluids. The fluid property can be treated as an average of the two fluids.
Without phase change, the volume fraction f is transported with the following equation in an ALE framework:

∂ f
∂t

+ (u − ug ) · ∇f = 0. (6)

This equation is different from a typical volume fraction advection equation ∂ f
∂t +u · ∇f = 0 in VOF, since ALE description

is used, and the velocity of referential system is taken into account.
For the solid region Ω t

s , the Lagrangian description is applied, and the motion equation is given as

ms
∂us

∂t
+ csus = F f + msg in Ω t

s × [0, T ] (7)

where ms, us, F f are respectively the general mass, general velocity vector and fluid general force vector. cs is damping
coefficient if needed, but is usually zero. The wording ‘‘general’’ means, in a 6 degrees of freedom problem, ms will include
mass and moment of inertia, us includes velocity and angular velocity, and F f includes force and moment. We here focus
on the rigid bodies with only translational degrees of freedom in three directions. If an extension to problems with 6
degrees of freedom is needed, either a global/local remeshing process, or a rotating spherical mesh with sliding interface
is needed. Otherwise, the fluid grids will easily be tangled and distorted with a large solid rotating angle, thus jeopardize
the whole simulation.

On the fluid–structure interface ΓFSI = ∂Ω t
f ∩ ∂Ω t

s , the velocity should be continuous, i.e. the kinematic condition is

u = us on ΓFSI. (8)

where u is the fluid mixture velocity vector and us is the solid velocity. Additionally, the forces on the fluid side and the
solid side need to be balanced, i.e. the dynamic condition is

F f =

∫
ΓFSI

σ f · ndS (9)

where the fluid total force F f is integrated over the fluid–structure interface ΓFSI with a normal vector n. The fluid stress
tensor is expressed as σ f = −pI + µ(∇u + ∇uT ), with u, p, µ the velocity, pressure and viscosity of the two-fluids
mixture, and I the identity tensor. By applying the virtual work principle, the energy conservation can be met on the
fluid–structure interface.

2.2. Algorithm for fluid, solid and their coupling equations

To solve the PDEs above, the fluid domain was solved considering solid influence as velocity boundary, and the solid
domain was solved considering fluid effects as external forces. Iterations are needed in each time step, and the following
numerical algorithm has been designed. The fluid part uses the Finite Volume Method (FVM) based on unstructured
collocated grids. The pressure implicit split operator (PISO) algorithm by Issa et al. [48] is used to solve the velocity and
pressure, with the Euler backward scheme. Applying the Gauss theorem, the Navier–Stokes equation is discretized as

1
∆t

(
1.5uc − 2un

c + 0.5un−1
c

)
Vc +

na∑
a=1

(
un

− ug
)
a · Saua

= −
1
ρ

(
∇pn

)
cVc +

1
ρ

na∑
a=1

Sa · (µ∇u)a +
1
ρ
bcVc

(10)

where superscripts n and n−1 denote latest two time steps, subscripts a and c indicate cell face and center. Sa is cell face
rea and Vc denotes the control volume. b includes gravity and surface tension. The following equation is consequently
chieved as

Au
cu

′

c = H
(
u′

)
−

(
∇

pn

ρ

)
c

(11)

where Au
c and H

(
u′

)
denote coefficients obtained after temporal and spatial discretization. The following algebraic

equations are formed for velocity u′
c with 1st prediction:

[A]{u′
} = {R}. (12)
c



652 M.-J. Li / Computers and Mathematics with Applications 81 (2021) 649–663

T

s

T
t

t

a

F
t
v
m
c
f
d

m
n
b

Here, [A] is a sparse matrix, {u′
c} is the array of velocity vectors to be solved, and {R} denotes source term. Using the

solved u′
c , unsolved pressure p∗ with 1st prediction, we have the following equation for velocity u′′ with 2nd prediction:

Au
cu

′′

c = H
(
u′

)
−

(
∇

p∗

ρ

)
c
. (13)

he pressure Poisson’s equation is therefore obtained as

∇ ·
(
Au
pu

′

c

)
= ∇

2
(
p∗

− pn

ρ

)
c
. (14)

By solving the above equation, pressure p∗ with 1st prediction is obtained, and velocity u′′ with 2nd prediction is then
olved by Eq. (13). Similarly, we have

∇ ·
(
Au
pu

′′

c

)
= ∇

2
(
p∗∗

− p∗

ρ

)
c
. (15)

he pressure with 2nd prediction p∗∗ is solved by the above equation, and velocity with correction u′′′ can be get. Usually,
hese two corrections are enough, however, additional corrections can still be made if necessary.

To solve the solid motion equation, the temporal central differencing scheme is used. The acceleration and velocity at
ime level n are given as

∂2dn
s

∂t2
=

1
(∆t)2

(
dn−1
s − 2dn

s + dn+1
s

)
,

∂dn
s

∂t
=

1
2∆t

(
−dn−1

s + dn+1
s

)
(16)

where ds is the solid displacement. The displacement at next time level dn+1
s can be explicitly obtained by the following

equation with a second-order accuracy:[
1

(∆t)2
ms+

1
2∆t

cs

]
dn+1
s =F n

f + msg +
2ms

(∆t)2
dn
s −

[
1

(∆t)2
ms−

1
2∆t

cs

]
dn−1
s . (17)

The fluid velocity u and solid velocity ∂ds/∂t on the FSI boundary are actually not matched, but staggered during time
advancing. This may cause severe numerical instability [49,50], and put great challenges to FSI algorithms. To guarantee
the kinematic condition (8) in each time level, iterative methods can be used, one promising way is the quasi-Newton
technique [51,52], which has been shown with high efficiency. In this paper, an implicit scheme with Aitken’s dynamic
relaxation [53] is applied. At time level n, several sub-steps are taken, and fluid boundary displacement (the same as solid
displacement) at kth sub-step is

dn+1,k
s = dn+1,k−1

s + ωn,k−1rn,k−1. (18)

where ω is a dynamic factor in the following form:

ωn,k
α = −ωn,k−1

α

(
rn,k−1

)T (
rn,k − rn,k−1

)(
rn,k − rn,k−1

)T (
rn,k − rn,k−1

) (19)

nd the residual is rn,k = dn+1,k+1
s − dn+1,k

s .
The grid velocity on FSI boundary takes the form

un+1,k
g =

(
dn+1,k
s − dn

s

)
/∆t, on ΓFSI. (20)

or FSI problems with far-field boundaries, ug can be directly applied to Eq. (2), which means the whole fluid computa-
ional domain will be moved with the referential coordinating system. This approach avoids mesh distortion and becomes
ery robust and efficient if the near-structure fluid field is the main concern. For other problems whose boundary effects
ust be taken into account, the boundary should remain still, and the computational domain must absorb the deformation
aused by solid motion. A Laplacian equation ∇ ·

(
ς∇ug

)
= 0 can be solved to spread the grid velocity into the whole

luid region, with a tunable coefficient ς to help control the quality of deformed grids. After determining ug in the whole
omain, an ALE mapping is carried out as

At (X) = X + ug∆t. (21)

In the following parts, we use both methods mentioned above. As for cases e.g. water entry problems, the 1st kind of
esh motion is used, since the water can be seen as a semi-infinite domain and only fluid fields in the vicinity of solid
eed to be considered. However, for problems such as the vibrating cylinder in a fluid container, the 2nd method must
e applied, since the boundary effects are crucial in this case.
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2.3. Interface compression method implemented in OpenFOAM R⃝

In this part, to be compared with our approach, we first introduce the interface compression method [54,55], which
as been adopted in OpenFOAM R⃝ [45]. In a two-phase flow problem, instead of constructing a sharp interface between
he two fluids, the interface compression method smears out the interface. However, this effect is limited to a certain
egion, say, a few computational cells, which means the interface is ‘‘compressed’’ in a sense.

In one computational cell, let ui (i = 1, 2) indicate velocity of each fluid and f ∈ [0, 1] indicate the volume fraction of
he first fluid, the mixture average velocity u is then defined as

u = f u1 + (1 − f )u2. (22)

Additionally, a relative velocity ur is defined as the velocity difference between the two fluids:

ur = u1 −
1

1 − f
(u − f u1). (23)

The volume fraction transportation equation for the first fluid in a general form ∂ f
∂t +∇ · (f u1) = 0 can then be written as

∂ f
∂t

+ u · ∇f + ∇ · [ur f (1 − f )] = 0. (24)

This equation is the same with the standard volume fraction transportation equation (6), except for the addition of an
interface compression term ∇ · [ur f (1 − f )]. To be noted, this additional term is only valid when f ∈ (0, 1), which is in
the vicinity of the two-phase interface. This prevents excessive diffusion of the interface. Eq. (24) can be solved without
explicit expression of each fluid’s velocity ui, but only with the mixture velocity u, if the relative velocity ur is numerically
given in the form

(ur)f = nf min
[
cγ

⏐⏐⏐⏐ φ

|S|

⏐⏐⏐⏐ , ⏐⏐⏐⏐ φ

|S|

⏐⏐⏐⏐
max

]
(25)

where φ is the velocity flux, S is the cell face area with orientation, and cγ is a predefined coefficient. The interface normal
vector nf is calculated by

nf =
(∇f )f⏐⏐(∇f )f + δ

⏐⏐ (26)

where δ is a small coefficient preventing float number overflow. Eq. (24) is solved by a multidimensional universal limiter
olver (MULES), during which process, coefficient cγ tunes the interface diffusion/compression effect. A smaller cγ leads
to good numerical robustness, however, the interface will be greatly diffused. Contrarily, a large cγ helps keep a sharp
interface, but numerical instability occurs from time to time. Generally, cγ = 1 is recommended in the OpenFOAM R⃝ [45]
official documents, and it will be adopted in the following part, to compare the interface compression method with our
interface geometric reconstruction approach.

2.4. Advection algorithm with interface geometric reconstruction

The accurate simulation of two-phase interface evolution is always a great challenge to numerical algorithms. For
a typical Eulerian approach, the calculation of free surfaces usually includes two steps: (1) to reconstruct an accurate
interface, and to determine its position and orientation; (2) to correctly calculate the flux across cells, with the two-phase
interface taken into account. The piecewise linear interface calculation (PLIC) method is a promising approach, which
generally uses an oriented plane to simulate interface in one cell, and then takes several dimensional split advection
steps.

Let us consider a control volume Vc cut by a plane representing the two-phase interface (Fig. 1), the plane can be
expressed as

nf · x + q = 0 (27)

where nf is the normal vector of the plane, and q is a constant to be determined. At the beginning of current time level,
the volume fraction is already known. The volume of phase-1 fluid formed by Eq. (27) can therefore be written as

V (q) = Vc f n (28)

Since the normal vector has already be obtained by the volume fraction gradient Eq. (26), the problem of constructing
an interface within a cell becomes the solving of q. Scardovelli et al. [56] analytically derived the plane factor q with
given f in a cube, and it was then extended to parallelepiped. However, for general hexahedron, or polyhedron, which is
commonly seen in unstructured mesh, analytical solution is not available.

For a general convex polyhedron, Eq. (28) is a monotonous function of q. We can thus use iterative method to obtain
q. Generally, bisection method [57] is used. Here, we use Newton’s iteration to get better convergence. Considering the
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Fig. 1. A computational cell cut by a group of trial planes.

Fig. 2. Lagrangian backtracking method to obtain flux cross cells. Blue polyhedron is the control volume to be solved, while red polyhedron is
created by backtracking using velocity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

volume of phase-1 fluid is the volumetric integration of the sub-cell cut by the plane, its derivative is thus the area of the
section cut by the interface. The Newton’s iteration is thus expressed as

qk+1
= qk −

Vc(qk) − Vc f n

Se(qk)
(29)

where k denotes the number of sub-iterations, and Se is the area of section.
After determining the interface position, flux need to be calculated. Dimension split method is usually applied due to its

concise form, e.g. Cifani et al. [46]. However, this method is not strictly conservative and has difficulties when extending
to unstructured mesh. Here, a Lagrangian backtracking method with un-split scheme is applied. As in Fig. 2, the blue
cell is control volume which needs to be solved. By using its nodal velocities and time step, a Lagrangian backtracking
polyhedron is formed. For cases with CFL number < 1, it can be guaranteed that the polyhedron will not cover areas
eyond the neighbor cells. In this case, for 2D problems, 8 neighbor cells are needed as stencils, and for 3D problems, 26
eighbor cells are necessary. The polyhedron is then decomposed into simplices, with its face triangulated. This process
an use a classical clipping and capping method [58], as well as improved methods with better efficiency [59,60]. Here,
e use the clipping and capping framework to obtain flux considering two-phase interfaces. Results are presented in the

ollowing parts.

. Advection validation cases

.1. Rotating disk with a slot

Zalesak’s test [61,62] is one of the most classical validation cases for two-phase problems. The case considers two
mmiscible fluids, one of which has the shape of a slotted disk, and the other is a square. Under a predefined velocity
ield, the slotted disk consequently rotates for a certain time, and will hopefully return to its original position, maintaining

ts shape unchanged. However, capturing the two-phase interface accurately is definitely non-trivial, especially in Eulerian
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Fig. 3. Zalesak’s test: comparison between the final shape solved by OpenFOAM R⃝ , and the shape calculated by our solver. The profile lines were
extracted by a volume fraction of 0.5.

Table 1
Zalesak’s test: comparison of accumulated error.

Error by Eq. (31)

Rudman et al. [62] 1.09 × 10−2

Scardovelli et al. [63] 1.00 × 10−2

Cifani et al. [46] 1.36 × 10−2

OpenFOAM R⃝ . [45] 7.03 × 10−2

Solver in this paper 1.92 × 10−2

frameworks. This case therefore becomes very suitable to test the capability of a two-phase solver, since it excludes the
error from Navier–Stokes equation, and focuses on the solution of advection equation (6).

In this case, the spatial computational domain is [0, 1] × [0, 1], and the disk has a radius of 0.15, with its center
(0.5, 0.75). The slot has a dimension of [0.475, 0.525] × [0.6, 0.8], and the predefined velocity field is

u = −ωc (y − yc)
v = ωc (x − xc)

(30)

where ωc is the constant angular velocity, and (xc, yc) is the center of the fluid domain. u, v are fluid velocities in x and
y directions. The spatial domain was discretized into 200 × 200 cells. Various cases were calculated with a maximum
Courant number (based on the maximum velocity magnitude) from 0.4 to 0.8, and the temporal convergence has been
achieved. For the following comparison, 16,000 time steps were used to test the accumulated error, which is defined as

EZalesak =

∑Ncell
i

⏐⏐fi − f i
⏐⏐∑Ncell

i f i
(31)

where fi is the final volume fraction in the ith cell, f i is the initial volume fraction in each cell, and Ncell is the total cells
number.

In Fig. 3, the final shapes calculated by the ‘‘interFoam’’ solver in OpenFOAM R⃝ and by our solver were presented. It is
uggested that the original solver in OpenFOAM R⃝ has failed to maintain an accurate shape after certain advection steps,
oreover, to increase temporal and spatial resolution will not help. On the other hand, despite a little smoothing in the
harp corners, the solver we developed can accurately preserve the initial configuration.
In Table 1, the accumulated errors calculated by Eq. (31) are presented. The results were from our solver, the interFoam

olver and the algorithms in the literature. It is suggested that our method has similar accuracy with those in the literature,
nd the error of OpenFOAM R⃝ is the largest among these results.
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Fig. 4. Shear deformation test: comparison of the final shapes at t = T , calculated by OpenFOAM and by our solver. The contour lines were extracted
by a volume fraction of 0.5.

3.2. Shear deformation of two-phase fluids

The following test of a fluid disk with shear deformation was first proposed by Leveque et al. [64], and then applied
by many researchers [64–66], to test the interface capturing/tracking capability.

In the spatial fluid domain [0, 1] × [0, 1], a fluid disk in another phase is located, with a radius of 0.15 and its center
(0.5, 0.75). A predefined velocity field is applied to the two-phase system as

u = sin(2πy) sin2(πx) cos (π t/T )

v = − sin(2πx) sin2(πy) cos (π t/T )
(32)

here u, v are fluid velocities in x and y directions. T is the period of the velocity field, and T = 8 is used here. Comparing
ith Zalesak’s test, in this case, the fluid disk will not maintain its shape at all time, but will be greatly stretched in
∈ (0, T/2). When t ∈ [T/2, T ), the velocity field reverses and the fluid disk will gather again and finally return to its

nitial shape at t = T .
Fig. 4 provides the final shapes calculated by our solver, and by OpenFOAM R⃝. The exact shape is also presented for

omparison. This case was solved on 256 × 256 grids. As can be seen, our solver preserved the interface shape, while
penFOAM failed to maintain the interfacial continuity. Fig. 5 further provides the profiles at time t = T/2, when the fluid
isk suffers the largest deformation. Results suggest that our solver can obtain good interfacial accuracy, while OpenFOAM
resents broken liquid drops. The failure of interFoam is possibly caused by the lack of geometric reconstruction of
nterface, and the inaccurate transport of volume fraction during free surface evolution. The algorithm in this work, on
he other hand, dealing with the interface reconstruction carefully in each time step, can thus obtain accurate results.

. Violent free surface flow and fluid–structure interaction cases

In this section, we will present more validation cases, including pure free surface flow problem, and pure fluid-rigid
ody interaction problem, to test the algorithm and solver in this paper.

.1. Dam break problem

Dam break problems were studied by many researchers [38,67–69], by both numerical and experimental approaches.
his problem has the feature of violent free surfaces, therefore is appropriate to test multiphase solvers. Here, we
ompared our solver and OpenFOAM R⃝, with the experimental results reported by Lobovsky et al. [67]. To reprise this
roblem, dimensions are in accordance with the experimental setup. As in Fig. 6, the domain is [0, 1.61] × [0, 0.6],
nd an initially quiescent water block has the dimensions [1.01, 1.61] × [0, 0.3]. Besides, a pressure sensor is located
t [0, 0.003] (units in meter). Material properties of water are ρw = 1× 103 kg m−3 and µw = 1.33× 10−3 Pa s. The air

has ρ = 1 kg m−3 and µ = 1.8 × 10−5 Pa s. Surface tension coefficient between air and water is 7.2 × 10−2 N m−1.
a a
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Fig. 5. Profiles of the two-phase interface at time t = T/2 in the shear deformation test case: (a) calculated by interFoam solver in OpenFOAM R⃝;
(b) calculated by solver in this paper. Computations were carried out on 256 × 256 cells, and the profiles were extracted by a volume fraction of
0.5.

Fig. 6. Dimensions of the dam break problem. The water block is initially still and will collapse as the simulation starts. Lobovsky et al. [67] have
reported experimental pressure data by a sensor on the left wall. The computational dimensions are in accordance with their model for comparison.

Fig. 7 shows the evolution of the free surface in detail. The profile of the two-phase interface at time 0.16, 0.28,
0.37, 0.45, 0.57, 0.86, 1.02 (units in second) are presented. Meanwhile, the experimental pictures by Lobovsky et al. are
provided for comparison. Results suggest that the free surface solved by our solver is similar with the experimental results,
especially at time 0.57, 0.86, and 1.02 s.

In Fig. 8, a quantitative comparison has been made. Lobovsky et al. carried out 100 tests and concluded a range of the
measured pressure on the sensor. We provides pressure results both by our solver and by interFoam. It can be seen, that
our pressure is in good agreement with the experiments, however, OpenFOAM failed to get accurate pressure, since the
free surfaces are not reliable in the first place.

4.2. Fluid-rigid body interaction validation

To validate the fluid-rigid body interaction capability of the solver, we present a case considering a vibrating cylinder
in a fluid container. This problem has been studied in [70–72] by different numerical schemes, and becomes a benchmark
case. Chen et al. [73] presented the analytical solution of this problem and Li et al. [74] made correction and extension
to this analytical solution. We here calculated this case by our solver with dynamic mesh and ALE method mentioned
above. Following the parameters in the literature, the cylinder mass is ms = 3.408× 10−1 kg m−1, the stiffness of spring
attached to the cylinder is ks = 3461.13 kg m−1 s−2. The cylinder has a radius of R1 = 6.35 × 10−3 m with an initial
displacement 0.02R1, the fluid container has a radius of 5R1. The fluid is mineral oil and has ρo = 0.935×103 kg m−3 and
µo = 4.1× 10−2 Pa s. The calculation was carried out on 12 × 12 cells and 200 × 200 cells (in radial and circumferential
directions). Fig. 9 presents the displacement time-history by these two sets of meshes. It is suggested that 200 × 200
grids can achieve accurate results in good agreement with the analytical solution [74].

Fig. 10 shows the pressure field distribution, as well as the streamlines at time t = 0.6 s. Compared with results in
the literature [70–72,74], it is suggested that the pressure and streamlines are accurate.
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Fig. 7. The evolution of free surface profiles in a dam break problem. Results by OpenFOAM R⃝ and by our solver are presented at times 0.16, 0.28,
.37, 0.45, 0.57, 0.86, 1.02 (units in second), and are compared with experimental results.
ource: Experimental pictures are from [67].

. Application in water entry problem

Water entry problems combine violent free surface flow and fluid-rigid body interaction issues. The water entry of a
edge has been investigated experimentally and numerically [75,76] by researchers. Here, this case was calculated by
ur solver. Using body-fit unstructured dynamic mesh, the fluid domain is described in an ALE framework, and the free
urfaces were reconstructed by the geometric un-spit scheme introduced above.
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d
r

Fig. 8. Comparison of pressure time histories: the central black line indicates the median of 100 tests by Lobovsky et al. [67], and the gray area
presents the lower and upper bounds of 2.5% and 97.5% estimation in the their experiments. The red line was solved by OpenFOAM R⃝ , and the blue
ashed line was calculated by the solver developed in this paper. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

Fig. 9. Displacement comparison between our solver and analytical solution by Li et al. [74].

Fig. 10. The pressure field and streamlines at time t = 0.6 s, considering a vibrating rigid body in mineral oil. 1/2 model is presented here due to
symmetry.

Following Zhao et al.’s experimental work, the computational model has been established with dimensions in Fig. 11.
The width of the wedge is 0.5 m and the total mass is 241 kg. Material properties of water are ρw = 1× 103 kg m−3 and
µw = 1.33 × 10−3 Pa s. The air has ρa = 1 kg m−3 and µa = 1.8 × 10−5 Pa s. Surface tension coefficient between air
and water is 7.2 × 10−2 N m−1.

Fig. 13 shows pressure field and free surface evolution at time 0.005 s, 0.016 s, and 0.02 s. By comparing with the SPH
simulation results by Oger et al. [76] and MPM simulation by Chen et al. [37], it can be found that our solver can obtain
more smooth pressure spatial fields (Pictures of their pressure results can be found in the cited literature). This is due
to the non-physical oscillation mainly caused by the weakly compressible assumption taken by their investigations. In
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Fig. 11. The dimensions of the water entry problem of a wedge.

Fig. 12. Comparison of wedge velocities during water entry.

ig. 12, we compared the wedge velocity calculated by our solver, by Chen et al.’s numerical simulation and by Zhao et al.’s
xperimental work. Results suggest good agreement between our results and the experimental data in the literature.

. Concluding remarks

For fluid-rigid body interaction problems with free surfaces, an ALE-VOF based algorithm has been developed and
uccessfully implemented in the open source code OpenFOAM R⃝.
The PLIC based method using Newton’s iteration can efficiently reconstruct interfaces in unstructured mesh. Together

with the conservative un-split geometric flux calculation scheme, the free surfaces can be accurately captured and evolved.
The ALE method was coupled with the VOF-PLIC solver, with an iterative scheme in dynamic mesh. Numerical results
suggest good accuracy and robustness of this solver in problems with free surfaces and fluid-rigid body interaction.

One possible improvement of this solver, lies in the time efficiency. Currently, a typical FSI case with free surface
needs 10–12 iterations per time step in average. To obtain accurate free surface, high spatial resolution is needed, which
will in turn increase the time consumption. More efficient iterative schemes are under consideration such as the quasi-
Newton technique [51,52]. Also, a Lagrangian way to trace the free surface, e.g. the SPH method, may increase efficiency.
Moreover, to validate the numerical simulation with more details, comparisons with experiments considering breaking
waves [77] are in progress. Again, the current work focuses on an accurate Eulerian approach to simulate FSI cases with
free surface. The algorithm and solver, are already applied to engineering problems, and are expected to be used in more
areas considering the coupled effects of FSI and free surfaces.
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Fig. 13. Pressure distribution and free surface profiles at time 0.005, 0.016, 0.02 (units in second) in the water entry problem.
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