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To study the magneto-fluid-structure interaction (MFSI) problems for rigid bodies and conducting fluids,
a numerical method and an analytical approach have been carried out. The numerical scheme is based on
a partitioned arbitrary Lagrangian-Eulerian framework, and is suitable for viscous, incompressible
magneto-fluid-structure interaction simulation. A displacement prediction-pressure stabilization scheme
has been established to enhance the stability and efficiency. Meanwhile, a consistent and conservative
scheme for deforming configurations has been developed. This method can numerically ensure the
divergence-free condition of the current density, and can conserve the momentum from the Lorentz
forces after grids update. The analytical approach has considered a vibrating cylinder surrounded by con-
fined fluids in a magnetic field. By assuming a small amplitude and a low magnetic Reynolds number, the
analytical solution can describe the temporal and spatial distribution of the fluid fields, the electromag-
netic fields, and the solid motion. These solutions are also suitable for general fluid-structure interaction
(FSI) problems. Comparative results suggest good agreement between the two methods developed in this
paper. Nonlinear effects of the magnetic fields were presented and discussed based on the numerical
results. These cases are based on careful validations, and can hopefully be used for future verification
and validation work.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Fluid-structure interaction (FSI) phenomena are ubiquitous in
industries and our daily lives. From the fluttering of aircraft wings
[1], the sloshing of liquid storage tanks [2], to the autumn leaves
and our beating hearts [3,4], FSI is almost everywhere. Magnetohy-
drodynamics (MHD), a seemingly uncommon problem, has also
been developed into a vast field of fundamental and applied
research. Typical examples are MHD generators, electromagnetic
pumps, and MHD metallurgical applications.

Magneto-fluid-structure interaction (MFSI) refers to the cou-
pling effects of the fluid and solid parts in a magnetic field. This
class of problems are rarely covered in the literature, however,
are of great importance in the development of fusion reactor blan-
kets. The liquid metal in a blanket bears strong electromagnetic
forces, and has mutual influences with the channel and the channel
inserts. In such an environment of multi-physical fields, the flow
stability, the heat transfer efficiency, and the structural safety
issues become rather complicated and challenging. Therefore, a
truly effective and efficient MFSI method, is of great interest and
in high demand. Moreover, in other industrial and scientific areas,
MFSI studies are expected to increase, e.g., in MHD industries with
considerable FSI effects, and in MHD nanofluid studies considering
soft channels.

The inherently nonlinear nature of the Navier-Stokes equations
places great difficulty to both FSI and MHD analytical studies. Lin-
earization and approximation are often needed. Some examples of
FSI analytical work are pipes conveying fluids by Païdoussis et al.
[5], slender bodies bending in a cross flow by Luhar et al. [6],
fluid-bulkhead vibration with free surface by Hu et al. [7], and flow
induced flapping of filaments by Shelley et al. [8]. Classical MHD
analytical solutions can be found in the work by Shercliff [9] and
Hunt [10], considering MHD channel flows with insulating or con-
ducting walls.

Numerical methods for FSI, on the other hand, have been stud-
ied more extensively. Based on the description of fluids, computa-
tional FSI can be categorized into three major classes: (1) the
Eulerian framework, using non-moving grids and interface captur-
ing techniques, e.g., the immersed boundary method [11], and the
volume-of-fluid method [12]; (2) the Lagrangian framework,
often using mesh-free methods, e.g., the smoothed particle
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hydrodynamics method [13], the moving particle semi-implicit
method [14], and the material point method [15]; (3) the mixed
method, typically the arbitrary Lagrangian-Eulerian (ALE) method
using moving grids [16–19]. Each type of method has its own
advantages and limitations. Numerical stability is a great challenge
in FSI simulations [20,21], especially for problems with a small
solid/fluid density ratio, or a large deformation. In partitioned
ALE approaches, iterations often converge very slowly, if at all.
Recent attempts to solve this problem include added mass effect
treatment and Robin boundary conditions [22,23]. On the other
hand, the MHD numerical work, is roughly divided into two
classes: the B-formula scheme [24] and the u-formula scheme
[25]. One of the most challenging parts in a u-formula method is
how to ensure the divergence-free condition of the current flux,
and how to conservatively calculate the Lorentz force. Besides,
large velocity gradients often occur at the MHD boundary layers,
which also causes numerical difficulties.

Analytical and numerical studies for magneto-fluid-structure
interaction problems are quite scarce, to the authors’ knowledge.
It is therefore very necessary to develop newmethods, and to build
up benchmark cases, for further verification and validation work.

The main objective in this paper, is to establish reliable bench-
mark cases for incompressible MFSI problems with a small mag-
netic Reynolds number. The model we are concerned with here
is a vibrating cylinder (rigid body) surrounded by confined fluids
in a magnetic field. Without magnetic fields, the problem becomes
a FSI case, with its solution initially derived by Chen et al. [26]
using a linearization to the N-S equations. They compared the the-
oretical solution to their own experimental results. This work has
become very successful as a benchmark test afterwards, and
helped to validate a number of FSI solvers. To name a few, we have
an ALE streamline upwind/Petrov-Galerkin (SUPG) finite element
method by Hughes et al. [27]; monolithic approaches based on
the pressure Poisson equation by Ishihara and Yoshimura [28]; a
combined edge-based smoothed finite element method and gradi-
ent smoothing method (GSM) in an ALE framework by Liu et al.
[29], etc. Enlightened by these works, we have derived the analyt-
ical solution to the MFSI case, and compared the solution to our
numerical method. Moreover, our MFSI solution can directly
degenerate into a FSI solution, which differs from Chen et al.’s
work, and can be regarded as a correction and extension, with a
higher accuracy and a larger range. The numerical method we
developed, is based on an ALE framework, with conservative elec-
trical current treatment on deforming grids, and a displacement
prediction-pressure stabilization scheme in the iterative process.
This numerical solver has been verified by our analytical solution,
for both FSI and MFSI cases.

The remainder of the paper is organized as follows. The detailed
MFSI numerical method and coupling techniques are given in Sec-
tion 2. The analytical solution to the magneto-fluid-structure inter-
action problem is derived in Section 3, which provides the FSI
solution at the same time. Then, comparisons between the two
methods, as well as the evaluation of the accuracy and efficiency,
are presented in Sections 4 and 5. Section 4 focuses on the FSI
benchmark cases, explaining the correction and extension work.
Section 5 establishes two sets of MFSI benchmark cases, by the
analytical and the numerical methods. Section 6 presents more
cases considering MFSI effects. Concluding remarks are made in
Section 7.

2. Numerical methodology

2.1. Governing equations

The numerical approach in this paper, is developed for
magneto-fluid-structure interaction problems considering coupled
rigid bodies and incompressible electrically conducting fluids. The
governing equations are as follows.

At any time t 2 0; T½ �, let Xt
f denote the fluid domain and Xt

s the
solid domain. The fluid-structure interaction interface is defined as
CFSI ¼ @Xt

f \ @Xt
s, which is the common boundary of the fluid and

the solid regions. To describe the deforming fluid domain, define
an arbitrary Lagrangian-Eulerian (ALE) mapping At as

At : X0
f ! Xt

f � R3; x ¼ At Xð Þ 2 Xt
f ; X 2 X0

f ð1Þ

where X0
f and Xt

f denote the initial and current configurations,
respectively. x and X thus represent coordinates in the correspond-
ing systems. In this ALE description, the Navier-Stokes equations
and the continuity equation are then written as:

qf
@uf

@t

����
v
þ qf uf � ug

� � � ruf ¼ r � rf þ J � B in Xt
f � 0; T½ � ð2Þ

r � uf ¼ 0 in Xt
f � 0; T½ � ð3Þ

where qf is the fluid density and uf is the fluid velocity vector. J and
B represent the current density and the magnetic field, respectively.
Subscript v indicates the equations are in the ALE description. ug

denotes the velocity of ALE referential system, i.e., the velocity of
the deforming fluid grids, satisfying ug ¼ @At Xð Þ=@t. rf is the fluid

stress tensor as rf ¼ �pI þ g ruf þruT
f

� �
, with p the fluid pres-

sure, g the dynamic viscosity, and I the identity tensor.
For problems with a low magnetic Reynolds number in the

scope of this paper, the current density can be calculated by

J ¼ jf ð�ruþ uf � BÞ in Xt
f � 0; T½ � ð4Þ

where u is the electrical potential and jf is the fluid electrical con-
ductivity. The charge conservation is satisfied as

r � J ¼ 0 in Xt
f � 0; T½ � ð5Þ

The electric potential Poisson equation is thus obtained from
Eqs. (4) and (5):

r � ðjfruÞ ¼ r � ðjfuf � BÞ ð6Þ
For the solid domain Xt

s, neglecting the Lorentz force, the
motion equation is given as

ms
@2ds

@t2
þ cs

@ds

@t
þ ksds ¼ F f in Xt

s � 0; T½ � ð7Þ

where ds is the solid displacement vector and F f is the total force
vector, which are equivalent to the fluid boundary force. The quan-
tities ms; cs, and ks represent the mass, damping, and spring stiff-
ness, respectively.

On the fluid-structure interface CFSI, the kinematic boundary
condition is satisfied as

df ¼ ds on CFSI ð8Þ
where df is the fluid displacement vector. The dynamic boundary
condition is written as

F f ¼
Z
CFSI

rf ds ð9Þ

where s is the area vector of CFSI. The energy conservation on the
interface is then satisfied by the virtual work principle.

2.2. Displacement prediction-pressure stabilization scheme

Iterative stability is always a great challenge for partitioned FSI
approaches. In a MFSI problem, additional variables (the electrical
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potential, current density, etc.) cause extra convergence difficul-
ties. During the iteration process, the first few sub-steps within
each time level are very likely to be unstable, which may increase
the number of sub-steps, or even jeopardize the whole simulation.
An inaccurately predicted interface displacement will become an
inappropriate initial condition for the next step, and may lead to
oscillating pressure results afterwards. Therefore, we developed
the following scheme to enhance stability and efficiency of the
MFSI algorithm, during the process a displacement prediction-
pressure stabilization idea was applied.

This scheme uses a second order prediction in the time domain
to get the FSI interface displacement. Taking into account the dis-
placements as well as their time derivatives from previous steps
will smoothly provide a predicted displacement, which considers
not only the tendency of the interface motion, but also the varia-
tion of their tendency. For sub-step k within time level n, we first
extract solid boundary displacements �dn

s ;
�dn�1
s , and �dn�2

s from the
last three time levels tn; ðtn � DtÞ, and ðtn � 2DtÞ, with overbars
indicating converged values. At any time t, let us assume the fluid
displacement to be df ¼ dðtÞ with a quadratic function dðÞ, which
can be determined by the displacements from the last three time

levels. Then, the fluid displacement dnþ1;k
f on CFSI for sub-step k at

the next time level can be explicitly predicted by

dnþ1;k
f ¼ �dns�2�dn�1

s þ�dn�2
s

Dtð Þ2
1
2 t

2 � tnt þ 1
2 tDt þ 1

2 t
2
n � 1

2 tnDt
� �

þ �dns��dn�1
s

Dt t � tnð Þ þ �dn
s ðk ¼ 0Þ

dnþ1;k
f ¼ dnþ1;k�1

f þxn;k�1rn;k�1 ðk– 0Þ

8>>><
>>>:

ð10Þ

By taking the time derivative of dnþ1;k
f , we get the velocity of the

fluid boundary surface as:

@dnþ1;0
f

@t
¼

�dn
s � 2�dn�1

s þ �dn�2
s

Dtð Þ2
t � tn þ 1

2
Dt

� �
þ

�dn
s � �dn�1

s

Dt
ð11Þ

where �dn
s � 2�dn�1

s þ �dn�2
s

� �
= Dtð Þ2 and �dn

s � �dn�1
s

� �
=Dt can be regarded

as the solid acceleration and velocity in a differencing scheme. The
solid motion in this way helps to predict the fluid boundary dis-
placement, and to smooth the pressure calculated in the initial
steps.

After the initial sub-step prediction, an Aitken’s dynamic relax-
ation [30] is applied to get stable results for the following sub-
steps, with a relaxation factor

xn;k
a ¼ �xn;k�1

a
rn;k�1
� �T

rn;k � rn;k�1
� �

rn;k � rn;k�1ð ÞT rn;k � rn;k�1ð Þ
ð12Þ

where the residual is rn;k ¼ dnþ1;kþ1
s � dnþ1;k

s .

Now that we have the fluid boundary displacement dnþ1;k
f , the

grid velocity unþ1;k
g on the FSI boundary becomes:

unþ1;k
g ¼ dnþ1;k

f � �dn
f

� �
=Dt; on CFSI ð13Þ

Applying Eq. (13) as a boundary condition, a Laplacian equation

r � 1runþ1;k
g

� �
¼ 0 is solved to obtain the grid velocity in the whole

fluid domain. Here, the coefficient 1 ¼ 1=ðkxg � xfsik2 þ e1Þ is a
function of distance so that the quality of deformed grids can be
controlled, where kxg � xfsik denotes the distance between the grid
and the FSI boundary, and e1 is a small value. The ALE mapping can
thus be written as

At Xð Þ ¼ X þ unþ1;k
g Dt ð14Þ

and the spatial position of the fluid domain is therefore determined.
2.3. Conservative scheme of current density and Lorentz force for
deformed grids

After the ALE mapping, we are now facing the MHD calculation
on deformed fluid grids. Based on our previous work [31], we have
developed a consistent and conservative scheme on deforming
grids system, for MFSI problems.

The divergence-free condition of �un
f has been violated after the

deformation of the grids. Before dealing with this, let us first solve
the electrical potential Poisson equation and calculate the current
density. In a controlled volume Vc , the following discretized equa-
tions are solved:

1
Vc

Xna
a¼1

@u
@n

� �nþ1;k

a
jf Sa ¼ 1

Vc

Xna
a¼1

na � �un
f � B

� �
a
jf Sa ð15Þ
Jnþ1;k
a ¼ �jf

@u
@n

� �nþ1;k

a
þ na � �un

f � B
� �

a
jf ð16Þ

where subscript a denotes the cell faces and na is the number of
faces. Sa and na are the area and the outward direction of a cell face,
respectively. A consistent scheme is used for discretizing the elec-
trical potential Eq. (15), and for the calculation of current fluxes
(16), such that the divergence-free condition of the current fluxes
can be ensured. Meanwhile, for deformed grids, a non-orthogonal

correction is needed to get unþ1;k and Jnþ1;k
a . We then reconstruct

the current density to the cell center in the following conservative
way:

Jnþ1;k
c ¼ 1

Vc

Xna
a¼1

Jnþ1;k
a xa � xcð ÞSa ð17Þ

where xa and xc represent the coordinate vectors of cell face center
and cell volume center, respectively. Subscript c denotes the cell
volume center. Eq. (17) can ensure the conservation of the total
momentum from the Lorentz force.

The pressure implicit split operator (PISO) algorithm [32] is
then used to get the fluid velocity and pressure, with the Euler
backward scheme:

1
Dt

1:5u�
f �2�un

f þ0:5�un�1
f

� �
c
Vcþ

Xna
a¼1

na � �un
f �unþ1;k

g

� �
a
Sa u�

f

� �
a

¼� 1
qf

r�pnð ÞcVcþ 1
qf

Xna
a¼1

na � gru�
f

� �nþ1

a
Saþ 1

qf
Jnþ1;k
c �B

� �
c
Vc ð18Þ
r � Au
cu

�
f

� �
c
¼ 1
qf

r2 p� � �pnð Þc ð19Þ

where u�
f and p� are predicted velocity and pressure, respectively. Au

c

represents the coefficients after discretization. For several steps of

correction, we can get the final velocity unþ1;k
f and pressure pnþ1;k

f .

The velocity unþ1;k
f here satisfies the divergence-free condition,

and the Lorentz force conserves the total momentum numerically.
Subsequently, the total fluid force exerted on the solid surface can
be obtained.

In contrast, a non-conservative scheme, e.g., calculating unþ1;k
f

after the grid deformation, and before the electrical potential Pois-
son equation, will violate the divergence-free condition. In this
case, Eq. (18) will calculate the Lorentz force with Jnc , which cannot
ensure the divergence-free condition on the new configuration.
This problem occurs when grids are moving or deforming, and
needs to be carefully dealt with. With the conservative scheme

mentioned above, unþ1;k and Jnþ1;k
a are calculated on a new
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configuration with corrections, right after the ALE mapping, and
can ensure the divergence-free condition of the electrical current.

2.4. Coupling scheme for the conservative magneto-fluid-structure
interaction algorithm

After the surface integration of the fluid force, the solid motion
equation can be solved. The central differencing scheme is
employed and the acceleration and velocity at time level n are
given as

@2�dn
s

@t2
¼ 1

ðDtÞ2
�dn�1
s � 2�dn

s þ dnþ1;kþ1
s

� �
;

@�dn
s

@t
¼ 1

2Dt
��dn�1

s þ dnþ1;kþ1
s

� �
ð20Þ

The displacement dnþ1;kþ1
s can then be explicitly obtained by

previous results �dn
s and �dn�1

s as

1

ðDtÞ2
ms þ 1

2Dt
cs

" #
dnþ1;kþ1
s ¼ Fn

f � ks � 2

ðDtÞ2
ms

" #
�dn
s

� 1

ðDtÞ2
ms � 1

2Dt
cs

" #
�dn�1
s ð21Þ

Now that all necessary solvers have been introduced, we sum-
marize the entire algorithm in Table 1, which provides the proce-
dures of the iterative approach within time level n.

In Table 1, all unknown variables are at the left hand side, while
right-hand-side variables are known from previous steps. These
variables have been defined above. The hollow capital letters
D;M; E; J;N;P; F;S are for functions and solvers, which have been
introduced in Eqs. (10), (13), (15)–(19), (9), (21). The maximum
convergence tolerance is indicated by emax.
3. Analytical study on the strong coupled MFSI problem

3.1. Description of the problem

Consider a rigid cylinder vibrating with a small amplitude in a
cylindrical container, and a viscous, incompressible, and electri-
cally conducting fluid filling the container and surrounding the
cylinder (Fig. 1). Let us establish a Cartesian coordinate system
x; y; zð Þ with a basis vector êx; êy; êz

� �
to describe the solid part,

and a cylindrical coordinate system r; h; zð Þ with a basis vector
Table 1
Iterative algorithm for magneto-fluid-structure interaction problems.

Sub-iterations at the nth time level
1: Predict fluid boundary displacement dnþ1;k

f ¼ D �dn
s ;
�dn�1
s ; �dn�2

s ; rn;k�1
� �

2: Update the configuration with grids velocity unþ1;k
g ¼ M dnþ1;k

f ; �dn
f

� �
3: Solve electrical potential Poisson equation, get unþ1;k ¼ E �un

f

� �
4: Calculate and reconstruct the electrical current Jnþ1;k ¼ J unþ1;k

� �
5: Solve N-S equations and the pressure Poisson equation, get velocity

unþ1;k
f ¼ N �un

f ; �u
n�1
f ;unþ1;k

g ; Jnþ1;k
� �

and pressure pnþ1;k
f ¼ P unþ1;k

f

� �
6: Integrate FSI boundary total force Fnþ1;k

f ¼ F pnþ1;k
f ;unþ1;k

f

� �
7: Solve the solid motion equation, get dnþ1;kþ1

s ¼ S Fnþ1;k
f ; �dn

s ;
�dn�1
s

� �
8: Get residual rn;k ¼ dnþ1;kþ1

s � dnþ1;k
s

9: Convergence criterion. If rn;k
		 		

2 > emax, not converged, go to step 10.

If rn;k
		 		

2 6 emax, converged, go to step 11.
10: k ¼ kþ 1, go to next sub-step and repeat 1–9.
11: Update �dnþ1

s ¼ dnþ1;kþ1
s , and �unþ1

f ¼ unþ1;k
f

12: n ¼ nþ 1, go to next time level and repeat 1–9.
êr ; êh; êzð Þ to describe the fluid. Both coordinate systems have their
origins fixed at the center of the cylinder. The container and the
cylinder are infinitely long in the z-direction, and their radiuses
are respectively R1 and R2. The cylinder is attached to the fixed,
no-slip container wall by a virtual spring (one can regard the spring
as an approximation to elastic forces of a rod with clamped ends).
In the z-direction, an external magnetic field is applied, with a con-
stant magnitude of B0. At the initial time t ¼ 0, a small displace-
ment Dl is given to the cylinder, which sits in the initially
quiescent fluid.

3.2. Formulation and derivation

For any time t 2 0; T½ �, taking into account the fluid influence,
the motion equation of the cylinder is given by:

ms
@2ds

@t2
þ cs

@ds

@t
þ ksds ¼ F f ð22Þ

where ms is the mass, cs is the inherent damping, and ks is the
spring stiffness. ds denotes the displacement vector, which is only
in the x-direction here. F f represents the total external fluid force,
including the pressure and the viscous force. Due to the symmetry,
F f is also in the x-direction only, and can be further separated into
two parts: (1) the part in phase with the solid acceleration, repre-
senting the added mass effect; (2) the part in phase with the solid
velocity, indicating the added damping effect. Defining CM and CV

as the added mass and added damping coefficients, respectively,
we can then re-write Eq. (22) into the following free vibration
formula:

ms þ CMMð Þ @
2ds

@t2
þ cs þ CVMxð Þ @ds

@t
þ ksds ¼ 0 ð23Þ

withM ¼ qfpR
2
1 the virtual fluid mass displaced by the cylinder, and

qf the fluid density. The quantity x denotes the damped vibrating
frequency of the cylinder as
Fig. 1. The vibrating cylinder surrounded by an electrically conducting fluid in a
magnetic field.
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x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks 1� f2
� �

ms þ CMM

s
ð24Þ

where f is the damping ratio and satisfies

f ¼ cs þ CVMx
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks ms þ CMMð Þ

p ð25Þ

By introducing a parameter k, the general solution to Eq. (23)
takes the form ds ¼ D1e�ktþixt þ D2e�kt�ixt

� �
êx with complex con-

stants Di. k governs the amplitude increment or decrement, and
meets

k ¼ fffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p x ð26Þ

By determining the constants Di with initial conditions

dsjt¼0 ¼ Dlêx; and
@ds

@t

����
t¼0

¼ 0 ð27Þ

we then write the displacement of the cylinder as:

ds ¼ Dl � e�kt cosxt þ k
x

sinxt
� �

êx ð28Þ

The solid velocity is thus

us ¼ @ds=@t ¼ � k2 þx2
� �

=x
� �

Dle�kt sinxtêx. Without loss of gen-
erality, let us write the solid velocity in the complex domain as

us ¼ � k2 þx2
� �

Dl
x

e�ktþixt êx ð29Þ

whose imaginary part is equivalent to the time derivative of Eq.
(28). The time varying features of the fluid domain can subse-
quently be described by e�ktþixt .

On the fluid-structure interaction boundary, i.e., the cylinder
surface, the kinematic boundary satisfies

uf

��
r¼R1

¼ us ð30Þ

where uf is the fluid velocity vector. A coordinate transformation is
needed in Eq. (30), since different coordinate systems are used. On
the container wall, the no-slip boundary condition is:

uf

��
r¼R2

¼ 0 ð31Þ
Fig. 2. Displacement histories for FSI cases: (a) analytical results for all four types
For the fluid domain, the continuity equation has already been
provided in Eq. (3), and the Navier-Stokes equation is re-written
as:

qf
@uf

@t
¼ �rpþ gr2uf þ J � B ð32Þ

where the constant external magnetic field is B ¼ B0êz. J denotes the
current density, and J � B represents the Lorentz force.

To solve Eq. (32), let us introduce a function w r; h; tð Þ which
meets

uf ¼ � @w
r@h

êr þ @w
@r

êh ð33Þ

Function w therefore satisfies the continuity Eq. (3). Substitut-
ing Eq. (33) into Eq. (32), and taking the curl of Eq. (32), we can
eliminate the pressure as well as the Lorentz force. The following
equation is subsequently obtained:

r4w� qf

g
@

@t
r2w ¼ 0 ð34Þ

The solution to Eq. (34) takes the form

w¼� k2þx2
� �

Dl
x

C1R
2
1

r
þC2r

 !
þR1 C3I1 nrð ÞþC4K1 nrð Þ½ �

( )
sinhe�ktþixt

ð35Þ
where Ii and Ki are modified Bessel functions. Ci are undetermined

parameters, and n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kþ ixð Þqf =g

q
.

From Eqs. (33) and (35), the fluid velocity can be obtained:
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�
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of fluids; (b) numerical results for mineral oil compared with the literature.



Fig. 3. Added mass and damping coefficients by our numerical method, compared
with the analytical solution and the numerical results in [27–29].
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In Eq. (36), no explicit Lorentz force terms exist. The electro-
magnetic effect actually lies in the parameters k andx, which sug-
gest an implicit relation between the fluid velocity and the Lorentz
force. By applying the boundary conditions Eqs. (30) and (31), the
parameters Ci in Eq. (36) are determined:
Fig. 4. Accuracy and efficiency of the numerical method. (a) The spatial convergence. (b
sub-steps within each time level. (d) The fluid total force during the iterative calculatio
C1 ¼ �a2�
I0 að ÞK0 bð Þ� I0 bð ÞK0 að Þ½ �þ2a I1 að ÞK0 bð Þþ I0 bð ÞK1 að Þ½ �

�2ac I0 að ÞK1 bð Þþ I1 bð ÞK0 að Þ½ �þ4c I1 að ÞK1 bð Þ� I1 bð ÞK1 að Þ½ �g=C5
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ð37Þ

where a ¼ nR1;b ¼ nR2, and c ¼ R1=R2. In a traditional approach,
these parameters are constant. Contrarily, Ci here are relevant to
the vibration features, and are determined by the factors like the
fluid density, the viscosity and the initial state of the cylinder.

The Ohm’s law and the charge conservation law have been pro-
vided in Eqs. (4) and (5). Combining these equations with Eq. (33),
the electrical potential Poisson equation will be obtained in a very
concise form:
) Displacement histories with/without the stabilization scheme. (c) The number of
n.



Table 2
Added mass and damping coefficients for FSI benchmark cases.

Air Water Mineral oil Silicon oil

Rx 1054 10236 302 84
Re 10.54 102.36 3.02 0.84
x 100.75 84.40 82.13 78.57

CM Chen et al. 1.2739 1.1393 1.4045 1.6796
Analytical in this present 1.2739 1.1447 1.4468 1.7857
Numerical in this present 1.3845 1.1406 1.4529 1.8125

CV Chen et al. 0.1926 0.0561 0.3271 0.6182
Analytical in this present 0.1926 0.0616 0.3711 0.7330
Numerical in this present 0.1883 0.0558 0.3848 0.8141
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Fig. 5. Comparison between our analytical solution and numerical solution, with Chen et al.’s analytical solution. (a) The solid displacement history. (b) The fluid velocity. (c)
The fluid pressure. (d) The total fluid force exerted on the solid surface. The time and spatial position are noted in the figures.
r2u ¼ B0r2w ð38Þ
The solution to Eq. (38) takes the form

u ¼ � k2 þx2
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#
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where Ci are known in Eqs. (37), and Ei are additional constants. Let
us apply the following electric potential boundary conditions
@u
@r

����
r¼R1

¼ 0; and ujr¼R2
¼ 0 ð40Þ

and the constants Ei can therefore be determined as

E1 ¼ � R2
2

R2
2 þ R2

1

; E2 ¼ R2
1

R2
2 þ R2

1

ð41Þ

Substituting Eqs. (36) and (39) into (4), the current density can
be obtained as



Fig. 6. Analytical and numerical solutions for mineral oil at t ¼ 0:2 s. (a) The horizontal fluid velocity. (b) The vertical fluid velocity. (c) The fluid pressure. (d) The streamlines.
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Fig. 7. Analytical and numerical streamline histories for the silicon oil case.



Fig. 8. Analytical and numerical displacement histories for Case I in different
magnetic fields (0:1 T;0:2 T and 0:3 T).
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and the fluid Lorentz force is thus

J � B ¼ jf B
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The electrical current and the Lorentz force here will affect the
fluid velocity, pressure, and the viscous force. The cylinder motion
will then be influenced and coupled with the fluid and electromag-
netic fields in an implicit way.

Upon substituting Eqs. (36) and (43) into (32) and integrating
(32), the fluid pressure is obtained as

p ¼ p0 þ
g k2 þx2
� �

Dl
xR1

C3 �2a
R1

r

� �
þ nra2 þ 2nr

R1

r

� �2
" #(

I0 nrð Þ

� C3a2I1 nrð Þ þ C4 2a
R1

r

� �
� nra2 � 2nr

R1

r

� �2
" #

K0 nrð Þ

�C4a2K1 nrð Þ� cos he�ktþixt þ ix� kð Þqf R1 k2 þx2
� �

Dl
x

C1
R1

r

� ��

�C2
r
R1

� �
� C3 nrI0 nrð Þ � I1 nrð Þ½ � þ C4 nrK0 nrð Þ½

þK1 nrð Þ�g cos he�ktþixt

�jf B
2
0r k2 þx2
� �

Dl
x

E1
R2
1

r2
� E2

" #
cos he�ktþixt ð44Þ

where p0 is the referential pressure. For a Newtonian fluid, the
stress tensor rf is expressed by

rf ¼ �pI þ g ruf þruT
f

� �
ð45Þ

with I the identity tensor. Substituting Eqs. (36) and (44) into Eq.
(45), rf is then obtained:

rf ¼ rrr êr êr þ rrhêr êh þ rhr êhêr þ rhhêhêh ð46Þ
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The total fluid force exerted on the solid is then given by inte-
grating the stress on the cylinder surface:
F f ¼
Z
CFSI

rf ds ð48Þ
where s is the area vector of FSI boundary CFSI. Applying a coordi-
nate transformation, the total force F f is then obtained as:
F f ¼ k� ixð Þ 1þ 2C1ð Þ þ jf B
2
0

qf
E1 � E2ð Þ

" #
M k2 þx2
� �

Dl
x

e�ktþixt êx

ð49Þ
Extracting the imaginary part of Eq. (49), we then have the total

force in the real domain. From time derivatives of Eq. (28), we
know the acceleration is in phase with cosxt � ðk=xÞ sinxt½ �,
and the velocity is in phase with sinxt. F f can therefore be suc-
cessfully separated into these two parts as mentioned in Eq. (23),
and finally the added mass and damping coefficients are deter-
mined as
CM ¼ �1� 2ReðC1Þ þ 2k=xð ÞImðC1Þ;

CV ¼ 2 1þ k2

x2

 !
ImðC1Þ þ jf B

2
0

qfx
E1 � E2ð Þ ð50Þ

Now that CM and CV are obtained, substitute Eqs. (50) into (25),
and then substitute (25) into (24) and (26), and we will have
k uf ;p;u; J
� � ¼ F k uf ;p;u; J

� �
;x uf ;p;u; J
� �� �

;

x uf ; p;u; J
� � ¼ G k uf ; p;u; J

� �
;x uf ; p;u; J
� �� � ð51Þ
where F and G represent implicit functions of k and x. Meanwhile,
k and x are functions of all the fields above. Eq. (51) therefore have
established a relation between the vibrating mechanism (indicated
by k andx), and the characteristics of the coupled system, governed
by the constants in F and G, including both material properties
(ms;qf ;g, and jf ), and external influences (ks and B0). The whole
system is thus strongly coupled by these varying parameters and
implicit functions.

It should be noted that in Eqs. (36), (39), (42)–(44), (47), (49),
the imaginary part of the right hand side shall be extracted to
get the final solutions to the fluid velocity, the electrical potential,
the current density, the Lorentz force, the fluid pressure, stress, and
the total force.



Fig. 9. Analytical and numerical solutions for Case I with B0 ¼ 0:1 T at time t ¼ 0:2 s. (a) The electrical potential distribution. (b) The vertical current density. (c) Streamlines.
(d) Electrical current lines.
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3.3. Application and extension

3.3.1. For general FSI problems
The solutions above, can also be applied on fluid-structure

interaction problems without magnetic field influences. For gen-
eral FSI cases, assuming jf ¼ 0 or B0 ¼ 0 in Eqs. (22)–(51), all nec-
essary solutions will be obtained then. To accurately get k andx, it
is suggested to use an iterative way, which could begin with k ¼ 0
and x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ks=ms

p
, and may take less than 10 steps for convergence.

Once k and x are determined, all variables can be obtained.
There are mainly two differences between our solution and

Chen et al.’s solution: (1) damping k is added; (2) frequency x
and other relevant quantities are variables, rather than constants.
In this way, the strong coupling effect can be taken into account.
The fluid velocity at FSI interface was assumed to be

uf ¼ �xDleixt êx in Chen et al.’s work, while we used Eq. (29)
to introduce damping k and a non-constant frequency x. There-
fore, after the above derivation, we obtained damped fluid
velocity and forces, rather than a sinusoidally oscillating fluid
field with a constant amplitude in Chen et al.’s work. The damp-
ing feature indicates that fluid is influenced by the solid in a
time-varying way, rather than a ‘‘prescribed” way. The solid is
influenced by the fluid in a similar way, and the two-way
strong coupling effect is thus taken into account, and leads to
more accurate results. Moreover, as we know, the existence of
fluid damping in this FSI system is definite, our solution can
better described the physical nature of the fluid-solid system
by introducing k.



Fig. 10. Diagram of the non-dimensional stability parameter �k with respect to the
Reynolds number and the Hartmann number.

Fig. 11. Geometry of Case II with a vibrating cylinder in fluids with the electrical
potential Dirichlet boundary condition.
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The differences between our solution and Chen et al.’s solution
will be presented in Section 4 by using specific numerical cases.

3.3.2. For MFSI problems and further applications
For magneto-fluid-structure interaction problems, the solution

above can be used as a benchmark case for verification and valida-
tion work. Detailed example cases are presented in Section 5.

The solutions in this paper have potential extensions in the cur-
rent framework. Since the magnetic field and external power
source can excite the vibration, for a very large amplitude, correc-
tions should be made. Another possible extension is for a time-
varying external magnetic field. One can substitute B0 into a time
dependent function, and take care of the time integral in Eq.
(44). Other possible extensions such as temperature coupling effect
can be expected in the current framework, yet still, the magneto-
fluid-structure interaction problem is the main concern in this
paper.
4. The FSI benchmark case: validation, correction, and
extension

4.1. Validation of the analytical and numerical approaches

As an example to validate the analytical and numerical meth-
ods, we will first present FSI benchmark cases in this section,
which have been studied in [26–29]. By reprising this problem,
we will present and explain the differences between our method
and Chen et al.’s work.

Following the parameters in [27–29], we have
ms ¼ 3:408� 10�1 kg �m�1; ks ¼ 3461:13 kg �m�1 � s�2; cs ¼ 0;R1 ¼
6:35� 10�3 m;R2 ¼ 5R1 and Dl ¼ 0:02R1. Four types of fluids are
calculated, and their properties are: (1) air with
qair ¼ 1:18 kg �m�3 and gair ¼ 1:82� 10�5 Pa � s; (2) water with

qwater ¼ 1� 103 kg �m�3 and gwater ¼ 1:33� 10�3 Pa � s; (3) mineral

oil with qm:oil ¼ 0:935� 103 kg �m�3 and gm:oil ¼ 4:1� 10�2 Pa � s;
(4) silicon oil with qs:oil ¼ 0:956� 103 kg �m�3 and

gs:oil ¼ 1:45� 10�1 Pa � s. We also define the Reynolds number as
Re ¼ 2qfxR1Dl=g and the kinematic Reynolds number as

Rx ¼ 4qfxR2
1=g. The comparison of CM;CV , and the solid displace-

ment are first presented. The analytical approach uses Eq. (50) to
obtain CM and CV . The numerical approach evaluates these coeffi-
cients by fitting the time-history curve of the solid displacement,
using the logarithmic decrement and the damped frequency.

Fig. 2(a) provides our analytical solutions of all four types of flu-
ids, which are used as benchmark results. Fig. 2(b) takes the min-
eral oil case as an example, and compares our numerical result
with the literature. Fig. 3 summarizes the added mass and damping
coefficients, by our methods and methods in the literature. It is
suggested that both analytical and numerical methods in this
paper give very accurate results, even for the most difficult air case
[27] considering a very small fluid density.
4.2. Accuracy and efficiency of the numerical method

During the calculation of the FSI problems, the displacement
prediction-pressure stabilization scheme was applied. Taking the
mineral oil case as an example, the accuracy and efficiency of the
numerical approach are demonstrated in Fig. 4.

To eliminate the dependence on grids, three sets of unstruc-
tured grids (144, 625, and 2500 cells, respectively) were used,
and the displacement histories have been given in Fig. 4(a). Despite
acceptable accuracy with 625 or 2500 cells, we further used very
fine grids (40,000 cells) to get a highly reliable result, which can
be used as a future benchmark test. Time step Dt ¼ 10�4 s was
used, and emax ¼ 10�9 was chosen as a very strict convergence cri-
terion (which means more sub-steps in each time level). Fig. 4(c)
suggests that the average number of sub-steps in each time level
will be reduced by the stabilization scheme. It also can be seen
in Fig. 4(d), that the calculation using the stabilization scheme
can finish after roughly 50,000 sub-steps, while it will take more
than 70,000 sub-steps without this method. Fig. 4(d) also suggests
that the total fluid force (mainly the pressure) will be greatly
smoothed during the iteration. This is due to a smoothed predic-
tion to the fluid boundary displacement, which will affect the solu-
tion to the pressure Poisson equation. In this case, the
displacement prediction-pressure stabilization scheme ensures
the stability by suppressing the pressure oscillation, and enhances



Fig. 12. Displacement histories with different magnetic fields for Case II. (a) Horizontal and vertical displacements. (b) Displacement magnitudes.
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the efficiency by reducing 30% of the sub-steps number. Mean-
while, the numerical accuracy will not be reduced by the stabiliza-
tion scheme, as can be seen in Fig. 4(b).

4.3. Correction and extension to the existing analytical solution

In this section, we will compare our analytical solution, as well
as our numerical solution, to the existing analytical solution in
[26]. In the work of Chen et al., the suggested parameters for com-
parison are the added mass coefficient CM and the added damping
coefficient CV . Table 2 lists these coefficients, from the work of
Chen et al. and from our analytical and numerical results.

Besides CM and CV , our analytical solution also gives the solid
displacement, the fluid velocity, pressure and stress. These vari-
ables were not explicitly given by Chen et al., but can be derived
by their CM and CV . Fig. 5 presents the comparison of the solid dis-
placement, the fluid velocity, pressure and the total force, using the
mineral oil case as an example. It is suggested our analytical solu-
tion is in accordance with our numerical solution, and differs from
Chen et al.’s solution. The solid displacements are similar, while
the results of the fluid velocity, pressure and stress are very differ-
ent. This is mainly because of the different formulations, and the
consideration of the amplitude change (indicated by k and f), and
the frequency change (indicated byx) in this paper. Our analytical
solution therefore describes the time-varying features with more
details, and can improve the accuracy and provide more field vari-
ables. Once again, one should keep in mind that, the variables in
Fig. 5 were not suggested for final results by Chen et al. The sug-
gested parameters CM and CV in their work, are very accurate.

Fig. 6 demonstrates detailed results of the mineral oil case at
time t ¼ 0:2 s, comparing the analytical and the numerical meth-
ods in this paper. These two approaches agree well and can provide
benchmark references for future comparisons. Fig. 7 gives the
streamline history of the silicon oil case from 0:3 s to 0:6 s, with
four representative stages (moving right, reaching the rightmost
position, moving left, and reaching the leftmost position). The ana-
lytical and numerical streamlines at symmetrical positions are
illustrated, and the results are very close. Vortices generated by
the vibration are also clearly obtained by both methods. Due to a
higher accuracy and a larger solution range, we believe our analyt-
ical solution can be applied as a correction (CM ;CV , and ds) and
extension (uf ; p;rf , and F f ) to the previous work.

5. The magneto-fluid-structure interaction benchmark cases

For the magneto-fluid-structure interaction problems, due to a
lack of existing analytical solution, we provide two benchmark
cases using the analytical and the numerical approaches in this
paper. The two cases have different electrical potential boundary
conditions: (1) Case I with the Neumann boundary condition on
the cylinder surface; (2) Case II with the Dirichlet boundary
condition on the cylinder surface. The fluid is mercury with
qmercury ¼ 1:35� 104 kg �m�3;gmercury ¼ 1:56� 10�3 Pa � s, and

jmercury ¼ 1:04� 106 X�1m�1.
5.1. Neumann BC for the electrical potential: analytical and numerical
approaches

The Neumann boundary condition case follows the analytical
solution in Section 3, with @u=@r ¼ 0 on the cylinder surface, and
u ¼ 0 on the container wall. To be noted, @u=@r ¼ 0 is often used
for an insulated stationary wall, but in this case, the wall velocity
causes normal electrical current on the cylinder surface. The cylin-
der can be considered as a time-varying power source, and the
input energy may exert the solid vibration. Fig. 8 demonstrates
the solid displacement histories with different external magnetic
fields (B0 ¼ 0:1 T;B0 ¼ 0:2 T, and B0 ¼ 0:3 T). The analytical results
are in line with the numerical ones, and both results show increas-
ing amplitudes with relatively strong magnetic fields (B0 ¼ 0:2 T
and B0 ¼ 0:3 T), and decaying amplitude with a weak magnetic
field (B0 ¼ 0:1 T). Fig. 9 provides more detailed distributions of
the electromagnetic fields, as well as the streamlines and electrical
current lines. The analytical results and the numerical ones meet
quite well, in the scope of this paper.

To better understand the mechanism of the electromagnetic
influences on the solid motion, let us introduce a non-

dimensional parameter �k ¼ k ks=msð Þ�0:5, indicating the stability
of the coupled system. �k > 0 and �k ¼ 0 respectively suggest
decaying and constant vibration amplitudes, meaning the system
is stable. While �k < 0, the amplitude will increase with time,
making the vibration unstable. Choosing various ks and B0, we
will get different Reynolds numbers Re ¼ 2qfxR1Dl=g and Hart-

mann numbers Ha ¼ 2R2B0
ffiffiffiffiffiffiffiffiffiffiffi
jf =g

p
. Using these non-dimensional

parameters, the diagram of �k has been presented in Fig. 10. It
can be seen that, a zero curve has divided the problem into two
areas: the stable zone (including the B0 ¼ 0:1 T case), and the
unstable zone (including B0 ¼ 0:2 T case). This can also be con-
firmed by the displacement histories in Fig. 8. In fact, since the
Lorentz force is in the same direction with the fluid velocity,
the electromagnetic effect will always cause increasing ampli-
tudes in this case, unless the viscous force is large enough to bal-
ance this effect.



Fig. 13. Numerical solutions for Case II with B0 ¼ 0:1 T, with background pressure contours and streamlines, at time 0:02 s;0:04 s;0:06 s, and 0:08 s, respectively.
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5.2. Dirichlet BC for the electrical potential: the numerical approach

Since the numerical method has been validated by Case I above,
the following case is presented only by the numerical method. In
this case, the electrical potential boundary conditions are
u ¼ 1� 10�4 V on the cylinder surface, and u ¼ 0 on the container
wall. The cylinder can be treated as a constant voltage power
source. In this case, the electrical current is only in the radial direc-
tion and the Lorentz force is in the toroidal direction. The solid dis-
placement becomes two-dimensional, and the fluid velocity is no
longer symmetric about the x-axis. An extra spring with the same
stiffness ks is added to balance the y-direction fluid force (see
Fig. 11).

Fig. 12(a) shows the solid displacements in the x- and y-
direction, with two different external magnetic fields (B0 ¼ 0:1 T
and B0 ¼ 0:2 T). The horizontal displacement will decrease with
time, and become non-periodical. Fig. 12(b) has presented the
displacement magnitude dsk k2, to demonstrate the damping effect
of magnetic fields. It can be seen that a stronger magnetic field will
cause larger decrement of the total displacement, which is com-
pletely opposite to Case I. In Case II, the toroidal Lorentz force will
drive the flow clockwise. Any velocities against this direction will
be suppressed, and this process will be accelerated by a stronger
magnetic field. Fig. 13 shows the history of streamlines from
0:02 s to 0:08 s, which suggests the change from a vibration
induced flow into a MHD dominated flow. This process will repeat
for several times afterwards, but eventually, both the solid and the
fluid will be rotating without any radial velocities.

6. Transversely oscillating cylinder in a freestream under
magnetic fields

In a fusion blanket module, an oscillating structure is a possible
way to induce MHD turbulence and enhance heat transfer



Fig. 14. Geometry of a transversely oscillating cylinder in freestream under a
magnetic field.

Fig. 16. Time histories of lift & drag coefficients for Re ¼ 18

Fig. 17. Force coefficients variation with respect to N, with Re ¼ 185 and
f e=f o ¼ 1:1. �CD;CLr:m:s: and CDr:m:s: denote mean drag coefficient, r.m.s. lift and drage
fluctuation coefficients, respectively.

Fig. 15. Force coefficients variation with respect to f e=f o with N ¼ 0. �CD ;CLr:m:s: and
CDr:m:s: denote mean drag coefficient, r.m.s. lift and drage fluctuation coefficients,
respectively.
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efficiency. We now consider a circular cylinder transversely oscil-
lating in a freestream under an external magnetic field. The geom-
etry is given in Fig. 14. Unlike the previous MFSI cases, the solid
motion in this case is pre-defined. The problem then becomes a
one-way coupled case, yet still very helpful to the study of MHD
issues under influences of solid motion.

To minimize the boundary effects, the simulation domain is
large enough in the streamwise and transverse directions. The
cylinder surface satisfies kinematic boundary condition in Eq. (8)
and is electrically insulated. The inlet has a uniform fluid velocity
U1, and the outlet pressure is zero. Other walls are considered as
slip boundaries, and the electrical potential is set to zero on the
upper and lower boundaries. A uniform external magnetic field
B0 exists in the streamwise direction. Simulation results suggest
5 and 0 6 N 6 10. The non-dimensional time is tU1=Lc .



Fig. 18. Instantaneous vorticity contours for 0 6 N 6 10;Re ¼ 185 and f e=f o ¼ 1:1. The cylinder is at its extreme upper position.
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quasi-2D characteristics, which is suitable to be compared with 2D
simulation results without magnetic fields in the literature [33,34].

The Reynolds number in this problem is defined as:

Re ¼ qf LcU1
g

ð52Þ

where qf and g are fluid density and viscosity, respectively. Lc is the
diameter of the cylinder. The interaction parameter (or Stuart num-
ber) is defined as:

N ¼ jf B
2
0Lc

qf U1
ð53Þ

where jf is the fluid electrical conductivity. The interaction param-
eter N describes the ratio of Lorentz forces over inertia forces. The
Hartmann number Ha, expressing the ratio of Lorentz forces over
viscous forces, is then

Ha ¼
ffiffiffiffiffiffiffiffiffi
ReN

p
¼ LcB0

ffiffiffiffiffi
jf

g

r
ð54Þ

The motion of the cylinder is given by a harmonic form:

dc ¼ Am cosð2pf etÞ ð55Þ
where dc is the y-direction location of the cylinder, Am is the oscil-
lation amplitude, and f e is the oscillation frequency. In the following
cases, we have Re ¼ 185;Am ¼ 0:2Lc , and 0:8 6 f e=f o 6 1:2 as in
Guilmineau and Queutey [33], with f o the natural shedding fre-
quency of a fixed cylinder. Considering the magnetic effects, we
have 0 6 N 6 10, or 0 6 Ha 6 43.

First, numerical cases with N ¼ 0 were simulated, i.e. cases
without magnetic field influences. Fig. 15 shows the mean drag
coefficient (�CD), and the r.m.s. lift & drag fluctuation
coefficients (CLr:m:s: & CDr:m:s:). Results for f e=f o ¼ 0:8; 0:9;1:0;1:1;
1:12; and 1:20 were presented, and the variations of force coeffi-
cients with respect to f e=f o are in line with 2D simulations in
[33,34].

Let us now consider the influences caused by streamwise mag-
netic fields. Fig. 16. provides time histories of lift & drag coeffi-
cients of the cylinder, taking into account the magnetic field
influences. The Reynolds number is Re ¼ 185 and the frequency
is fixed as f e=f o ¼ 1:1. Results for N ¼ 0;0:1;0:2;1;2; and 10 were
presented. For the N ¼ 0 case, CD and CL time histories are in good
agreement with [33]. As the magnetic field strength increases, the
force coefficients become harmonic. Fig. 17 summarizes �CD;CLr:m:s:

and CDr:m:s: with respect to N. As can be seen, the force coefficients
will first decrease, then increase with respect to the interaction
parameter. At about 0:1 6 N 6 0:3, or 4:3 6 Ha 6 7:4, an extreme
point can be found.

In order to explain the nonlinear effects caused by magnetic
field influences, the vorticity contours, streamlines and pressure
coefficient are given in Figs. 18–20. For all results, the cylinder is
at its extreme upper position. For the pressure coefficient distribu-
tion, h is measured clockwise starting from the front stagnation
point.

For the N ¼ 0 case, the characteristics of CD and CL are affected
by the combination of two aspects: (1) the natural vortex shedding
of a stationary cylinder; (2) the forced vibration of the cylinder. As
a result, time histories of CD and CL in Fig. 16 suggest beat fre-
quency as the difference between f o and f e. When the magnetic
field is taken into account, the streamwise flow will not be directly
affected by Lorentz forces. However, the transverse flow will be
greatly suppressed by electromagnetic effects. For a stationary
cylinder, vortices will be diminished by streamwise magnetic
fields, and the flow will turned into steady [35]. Thus, for



Fig. 19. Instantaneous streamlines for 0 6 N 6 10;Re ¼ 185 and f e=f o ¼ 1:1. The cylinder is at its extreme upper position.

Fig. 20. Pressure coefficients with 0 6 N 6 10;Re ¼ 185 and f e=f o ¼ 1:1. The
cylinder is at its extreme upper position, and h measures clockwise starting from
the stagnation point.
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N ¼ 0—0:2, we can see that the beat feature gradually disappears,
and the effects of f o on CD & CL diminishes. In Figs. 18 and 19, vor-
tices are elongated in the streamwise direction, and the fluctuated
streamlines are limited to a narrow range. Due to the damping
effects of the magnetic field, pressure differences around the cylin-
der (Fig. 20) decrease with N ¼ 0—0:2, leading to smaller drag force
and lift force fluctuation.

When N > 0:2, the frequencies of CD & CL are mainly decided by
f e, and the natural vortex shedding are fully diminished. As the
magnetic field becomes stronger, the forced vortex shedding will
also be suppressed (Fig. 18). In this case, the boundary layer sur-
rounding the cylinder will be forced to move transversely as the
cylinder oscillates. Since the transverse fluid velocity will be sup-
pressed by the magnetic field, a strong drag force will be generated
by Lorentz forces in the boundary layer. This explains the increase
of force coefficients when N > 1 (Fig. 17).
To be concluded, the streamwise magnetic field affects the sys-
tem from two aspects: (1) diminishing vortices shedding, and
reducing the force coefficients; (2) suppressing transverse flow
caused by the forced vibration, and increasing the force coeffi-
cients. These effects are coupled together, and explain the turning
point in Fig. 17.

7. Concluding remarks

For magneto-fluid-structure interaction problems, an analytical
solution and a conservative numerical scheme have been pre-
sented. The analytical model in this paper has a simple geometry,
but is very challenging due to strong coupling effects of multi-
physical fields. For further studies on MFSI problems, this problem
is suitable as a beginning case and a benchmark test. The following
conclusions have been made.

(1) For general fluid-structure problems, a strongly coupled cor-
rection and extension has been established, comparing with
the previous analytical work. By considering the varying fea-
tures of the vibrating system, the corrected solution
improves the accuracy of added mass and damping coeffi-
cients, and solid displacement. Besides, the fluid velocity,
pressure and stress have been accurately provided, which
has extended the previous solution range.

(2) The analytical solution to the magneto-fluid-structure inter-
action problem has been derived, and has been validated by
the numerical method. The analytical results for further
comparison include: the fluid velocity, pressure and stress;
the solid displacement; the added mass and damping coeffi-
cients of the system; the electrical potential, current density
and the Lorentz force.

(3) The numerical approach for magneto-fluid-structure inter-
action studies has been developed, and a displacement
prediction-pressure stabilization technique has been
applied. This stabilization scheme will effectively smooth
the pressure oscillation and enhance the iterative efficiency.



M.-J. Li et al. / Computers and Structures 210 (2018) 41–57 57
(4) In the magneto-fluid-structure interaction algorithm, a con-
servative scheme of current density and Lorentz forces for
deformed grids has been developed on unstructured grids.
Numerical results suggest good accuracy and stability, and
a group of benchmark cases for MFSI problems have been
successfully established, by the methods above. Considering
the vibrating cylinder in quiescent fluid or cross flow, mag-
netic fields will cause nonlinear effects. The electromagnetic
excitation and suppression influences were discussed, and
the turning point was presented.

The analytical solution, together with the benchmark cases pre-
sented, are suitable for future validation and verification work,
with respect to new techniques in magneto-fluid-structure inter-
action studies. The numerical method developed above, is
expected to be applied on further MFSI areas, including the fusion
technologies.
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