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Bonding condition can significantly affect the performance of multi-layer asphalt pavements.
This paper introduces a novel serrated interfaces design to enhance bonding condition between
layers. Numerical studies on this model have been presented by using the non-linear finite
element method. The multi-layer contact problem was solved by applying the Coulomb fric-
tion model and Lagrange multiplier methodology. To evaluate the performance of the serrated
interfaces model, comparative studies with a fully bonded model and a smooth surface friction
model have been conducted. Results suggest that the serrated interfaces model provides much
more shear resistance than the smooth surface counterpart, and has similar performance as the
ideal fully bonded model in terms of longitudinal and vertical displacements. Moreover, the
serrated interfaces can change interfacial horizontal stresses into compressive ones, which is
beneficial for preventing cracks at low temperature. Despite its limited effects on the reduction
of vertical and shear stresses, the serrated interfaces should be a very promising development
with appropriate designs and implementations.

Keywords: serrated interface; asphalt pavement; bonding condition; contact analysis;
Lagrange multiplier method

1. Introduction
Bonding condition between layers is one of the most significant factors in the design of asphalt
pavements. Traditional analysis usually assumes the multi-layer system as a monolithic structure
without interfacial separation. However, bonding between layers in practice is often inadequate
and contributes a lot to cracks, slippage, rutting and other failures. As the bonding problems have
caused increasing concerns, several approaches have been carried out to extend the service life
of pavements, for instance, the tack coat made with asphalt emulsion between asphalt layers or
between asphalt and cement (Canestrari et al., 2013; Hachiya & Sato, 1997).

Due to the complexity and non-linearity of the analytical approach, experimental and numer-
ical methods are most commonly applied to interfacial problems. Laboratory tests usually use
tensile, shear, torque or wedge splitting to investigate and optimise the bonding condition (Rapo-
seiras, Castro-Fresno, Vega-Zamanillo, & Rodriguez-Hernandez, 2013; Uzan, Livneh, & Eshed,
1978). Field investigations such as falling weight deflectometer (Hakim, Cheung, & Armitage,
2000) and accelerated testing programmes (Ozer, Al-Qadi, Wang, & Leng, 2012) have also been
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2 M.-J. Li et al.

carried out for validation and back-calculation. Numerical analysis, especially finite element
method (FEM), is widely used due to its effectiveness and high efficiency. Fully bonded mod-
els, fully slipped models and friction models have been extensively investigated. The Coulomb
friction model and its improved models are commonly used (Kruntcheva, Collop, & Thom,
2005; Romanoschi, 1999; Romanoschi & Metcalf, 2001; Yoo, Al-Qadi, Elseifi, & Janajreh,
2006). Most of these studies assume the interfaces between layers as a smooth plane. How-
ever, laboratory tests suggest that surface characteristics (surface roughness, macro and micro
texture, contaminations and moisture) can significantly affect the bonding condition. Leng, Ozer,
Al-Qadi, and Carpenter (2008) suggested that a transversely or longitudinally tined surface of
Portland cement concrete (PCC) can increase interface shear strength when the tack coat appli-
cation rate is low. A milled PCC surface can provide even larger interface shear strength with
various tack coat application rates. Other studies (Santagata, Partl, Ferrotti, Canestrari, & Flisch,
2008; West, Zhang, & Moore, 2005) also found that rough or milled surfaces with grooving can
lead to higher interface resistance than smooth surfaces.

2. Objectives and scope
Despite large numbers of studies on the friction model in the literature, it is difficult to find
detailed numerical analysis for contact issues between rough or tined interfaces in pavements.
Practically, the interfaces between hot-mix asphalt and PCC can be artificially tined or milled.
For the design and construction of asphalt pavements, one possible way to increase interfacial
bonding is to make transverse grooves on the lower layer surface. The longitudinal section thus
becomes serrated. The serrated interfaces are expected to enhance the integrity of the pavement
system. Since our laboratory and field investigations of this model are in progress, we focus
mainly on numerical analysis in this paper. Here, serrated interfaces have been assumed in the
model, and conducted a non-linear finite element contact analysis between pavement layers.
Multi-layer pavements were modelled and compared with the traditional fully bonded model and
smooth friction model.

3. Numerical methodology
3.1. Contact analysis methodologies
Contact analysis is widely used in mechanical engineering, civil engineering and other fields.
Early finite element contact analysis can date back to direct iteration methods (Francavilla &
Zienkiewicz, 1975). During iterating, the stiffness or flexibility matrix of the system should be
regenerated. More common methodologies recently are Lagrange multiplier methods and penalty
methods (Pantano & Averill, 2002; Tur, Fuenmayor, & Wriggers, 2009). Penalty methods intro-
duce penalty parameters to approximate the boundary conditions. Contact constraint can thus be
applied as variational inequalities in weak formulation. Theoretically, by choosing a rather large
penalty parameter, the contact constraint tends to be accurately implemented. However, this will
lead to ill-conditioned equations and the choice of penalty parameter becomes critical in calcu-
lation. On the other hand, the Lagrange multiplier method introduces Lagrange multipliers to
exactly implement the contact constraint. In comparison between these two methods (Weyler,
Oliver, Sain, & Cante, 2012), it is suggested both methods have similar performance when
parameters are appropriately chosen. However, in some critical situations, the penalty method
may lead to excessive penetration and thus produce undesired results. In this work, the Lagrange
multiplier method is applied.
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3.2. Lagrange multiplier method
3.2.1. Governing equations
For the contact problem between two bodies i� (i = 1, 2) in Figure 1, i� are defined as their
boundaries with normal vectors in. The governing equations with boundary conditions can then
be written as follows.

Equilibrium equation : ∇ · iσ =i b in i�, (1)

Constitutive equation : iσ =i D : iε in i�, (2)

Geometric equation : iε = 1
2 [∇ iu + (∇ iu)T] in i�, (3)

Dirichlet’s boundary condition : iu = iū on i
D�, (4)

Neumann’s boundary condition : iσ · in = iF̄ on i
N �. (5)

Herein σ , ε and D are stress, strain and elasticity tensors, respectively. b and u are body force and
displacement vectors. ū and F̄ are pre-defined displacements and tractions on certain boundary
areas.

3.2.2. Constraint implementation
Contact problems have additional boundary constraints. Define iFn and iFτ as normal and
tangential contact forces, and for a certain contact point pair we then have:

1Fn + 2Fn = 0, 1Fτ + 2Fτ = 0. (6)

Figure 1. Contact model sketch.
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4 M.-J. Li et al.

Defining gn as the minimum distance between two surfaces, the geometrical impenetrability
condition can be described as follows with spatial coordinates ix

gn = (1x − 2x) · 2n ≥ 0. (7)

While interfacial cohesive forces are neglected, only pressure in the normal direction can be
found. The normal traction condition can be described as follows:

iFn ≤ 0. (8)

In the Coulomb friction model, tangential forces can be described with friction coefficient μ:

|iFτ | ≤ μ|iFn|. (9)

The contact problems will be solved in procedures described in Figure 2, where εu is a small
number for contact judgement, i

D�, i
N � and i

C� are the prescribed Dirichlet, Neumann and pos-
sible contact boundaries. iuτ and iun denote tangential and normal interfacial displacement. BC
means boundary conditions including the Dirichlet, Neumann and contact ones.

The functional of the system can be written as

� = �P + �C (10)

Figure 2. Flow chart of the contact problem algorithm.
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with �P being the potential energy without contact constraint, and �C the additional contact
functional. With Lagrange multiplier λ, it can be written as

�C =
∫

C�

[λn(
1un − 2un + gn) + λ1(

1u1 − 2u1) + λ1(
1u2 − 2u2)]dS. (11)

By using the varitional principle we have

δ� = δ�P + δ�C = 0. (12)

We can then obtain the solution since only λn is independent and the impenetrability condition
is applied here.

4. Modelling and numerical results
4.1. Geometry and material parameters
A six-layer model was established (Figure 3) in this work. Here, x, y and zare defined as lon-
gitudinal, vertical and transverse axes of the pavements, respectively. The origin is located
at the centre of the load on the surface of the road. All six layers have serrated interfaces
in-between. h and θ are the height and angle of these serrations, and here h = 0.01m and
θ = 90◦. The traffic loads on the road surface include vertical and horizontal loads. Tyre pres-
sure is 707 kPa according to the Chinese BZZ-100 standard, and its contact length is set to
be 0.22 m. Horizontal load is defined as 0.7 times the magnitude of vertical load for sim-
ulating a typical sudden brake case on a dry, clean asphalt road. Both loads are distributed
uniformly.

Figure 3. Geometry of multi-layer pavements with serrated interfaces.
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6 M.-J. Li et al.

Table 1. Material parameters of each layer.

Layer Material Thickness (m) Elastic modulus (MPa) Poisson’s ratio

Asphalt layers Fine-grained asphalt concrete 0.04 1400 0.3
Medium-grained asphalt concrete 0.05 1200 0.3
Medium-grained asphalt concrete 0.06 1200 0.3

Base Cement stabilised macadam 0.20 1700 0.25
Subbase Limestone soil 0.40 550 0.3
Subgrade Soil 0.40 45 0.3

The material parameters of each layer are listed in Table 1. The choice of materials is based on
a typical design and the recommendations of Chinese standard (Ministry of transport of China,
2006) on asphalt pavements. All materials are considered as linear elastic and isotropic here. The
typical pavement temperature here is 20°C.

4.2. Validation of algorithm and model
4.2.1. Analytical approach validation and grid independence test
Since field and laboratory investigations for the serrated interface model are quite difficult to
find, two validating cases considering an analytical solution and grid independence verification
have been presented here.

The classic semi-infinite elastic problem can be applied to validate a simple road model. In
a semi-infinite elastic body under circular uniform pressure p with a radius of δ, the vertical
displacement w and vertical stress σz can be written in the following form:

w = (1 + μ)pδ

E

∫ ∞

0

(
2 − 2μ + z

δ
x
)

e−(z/δ)x J1(x)J0
( r

δ
x
)

x
dx, (13)

σz = −p
∫ ∞

0

(
1 + z

δ
x
)

e−(z/δ)xJ1(x)J0

( r
δ

x
)

dx. (14)

Here, E and µ are elastic modulus and Poisson’s ratio. z and r are vertical and radial coordinates,
and x = ξδ. J denotes the Hankel transform function. The vertical displacement and stress on the
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Figure 4. Validation with the semi-infinite elastic model – vertical displacement and stress for the surface
of the road.
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Figure 5. Grid independence verification of the model.

road surface (z = 0) calculated by the FE model have been validated with the analytical solution.
Figure 4 shows good agreement between the FE approach and the analytical approach.

The grid independence verification case was then carried out. The six-layer serrated inter-
face model was calculated with various spatial discretisation forms. Figure 5 suggests that with

Figure 6. Experiment on a cement disc under pressure.
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8 M.-J. Li et al.

fine enough grids, the numerical solution will be grid independent. The numerical model with
appropriate discretisation will then be applied in the following part.

4.2.2. Laboratory tests verification
Here, a model with one layer has been verified with laboratory tests. A cement thick disc with a
diameter 1 m and thickness 20 cm has been made. A uniformly distributed pressure from 2.3 to
2.9 MPa has been applied to the centre of the surface. The steel cylinder for load application has
a diameter of 15 cm. More than 30 strain gauges have been installed on the surface of the cement
disc. Radial and tangential strains at different locations have been tested under different pressures.
Experiments have been carried out for more than 20 times for each load level and the average
strains have been compared with those were calculated with the FE model. An elastic modulus
of 30,000 MPa and a Poisson’s ratio of 0.3 have been set during the calculation (Figure 6).

It can be seen from Figure 7 that the FE calculation in the one-layer cement model has good
agreement with the experimental results in most areas. Since the strain gauge installed too near
the load centre may be damaged, the strains in these areas are not available. Although the one-
layer model is different from the serrated model, the basic FE calculation process can be verified
through this case.

4.3. Comparative studies on multi-layer pavements
In order to evaluate the mechanical performance of the multi-layer model with serrated interfaces
(hereinafter the “serrated model”), two additional models have been investigated for comparison.
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Figure 7. Comparison between numerical and experimental results for radial and tangential strains.
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Road Materials and Pavement Design 9

One is a fully bonded model which has continuous displacement between layers (the “continuous
model” for short), and the other one is a Coulomb friction model with smooth interfaces between
layers (the “smooth model” or “smooth friction model”). The friction coefficient of the smooth
model is 0.7 which is the same as the serrated model. Comparative studies on these models are
presented in the following part.

4.3.1. Displacement comparison
Figure 8 displays the displacement distribution of the serrated model, and the most interesting
feature of this contour is the discontinuity of interfacial displacement. In both the smooth and the
serrated models, interfacial separation can be found in longitudinal and vertical directions. The
detailed view with 200 times amplification presents this feature clearly, especially in the region
behind the wheel. Due to the continuity of material, the upper layers will be lifted up slightly
under the traffic loads. Although the magnitude of displacements is rather small, the tendency of
separation truly exists.

Here, we focus on investigation of the most critical areas of the multi-layer system, including
the surface of the asphalt layer and all five interfaces. The displacements and stresses of these
areas along the longitudinal direction are presented in the following figures in the order of their
depths.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

Displacement, mm:

Figure 8. Displacement distribution and interfacial details.
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Figure 9. Vertical displacements at different depths.

The vertical displacements of all three models are displayed in Figure 9. As can be seen,
the serrated model leads to larger displacement than the continuous one; however, it apparently
improves the bonding condition compared with the smooth model. On the surface of the asphalt
layer, maximum vertical displacement of the serrated model is 12% larger than that of the contin-
uous one and 29% smaller than that of the smooth model. As the depth increases, displacements
of all models decrease, and the vertical displacements of the serrated model are always smaller
than those of the smooth model.

The horizontal slippage under traffic loads is significantly influenced by the bonding con-
dition. Figure 10 shows that the smooth model causes the largest longitudinal displacement
on each interfaces. The serrated model, however, can greatly reduce the horizontal displace-
ment, especially on interfaces at y = − 0.04 and y = − 0.09 m. Considering horizontal slippage
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Figure 10. Longitudinal displacements at different depths.

prevention, the performance of the serrated model is quite close to the continuous one, and is
much better than the smooth model.

4.3.2. Interfacial stresses comparison
Various stresses for all three models are presented here to further evaluate the performance of
different pavement systems.

The vertical stresses on each interface are presented in Figure 11. On the road surface, the
vertical stresses are basically the same as the imposed traffic loads. As the depth increases, the
maximum vertical stress of the serrated model can be slightly smaller than that of the smooth
model. On interfaces between layers with different modulus, the vertical stresses fluctuate in
the longitudinal direction due to the geometrical characteristics. As a consequence, the effect on
vertical stress reduction of the serrated model is very limited.
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Figure 11. Vertical stresses at different depths.

The horizontal tensile stresses can cause cracks in pavements, especially at low temperature.
Figure 12 shows longitudinal stresses at different depths. The stresses on the road surface are
similar for all three models. However, very different features on the lower interfaces can be
found. In the continuous model, the horizontal load typically causes compressive stress in the
same direction as that of the horizontal force and tensile stress in the opposite direction. The
smooth model has even larger tensile stresses. However, the serrated model suffers almost no
tensile stresses beneath the road surface. The compressive stresses are also smaller in most areas
compared with the other two models. The reason is that the serrations will separate from each
other (Figure 8) under tensile stresses and will mainly cause compressive stresses. This unique
feature of the serrated model is quite beneficial for the prevention of cracks at low temperature.
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Figure 12. Longitudinal stresses at different depths.

Shear failure is another important factor to be considered. Figure 13 shows that the shear
stresses of the serrated model are similar to those of the continuous model on upper interfaces,
but the shear stresses are larger and are more fluctuated than those of the other two models on
other interfaces. In this sense, the serrated model is not promising for the prevention of shear
failures in pavements.

Figure 14 suggests that the von Mises stresses of three models are similar on the road surface.
When the depth increases, the serrated model will have similar stresses to the continuous model.
Especially with y = − 0.75 m, the von Mises stresses of the serrated model are even smaller
than for the continuous model.
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Figure 13. Shear stresses at different depths.

It can be seen from the discussions above that the serrated interface may cause larger stress
in some areas. This is because the pointed edges of the serrated interface will lead to stress
concentration and bring potential material failure problems.

5. Conclusions and discussion
For improvement of the interfacial bonding condition, the serrated interfaces model has been
introduced. To study its effectiveness and mechanism, the Lagrange multiplier method was
applied in finite element contact analysis. Comparative studies with a fully bonded model and a
smooth friction model suggest that the serrated model has several unique features and is quite
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Figure 14. Equivalent stresses at different depths.

promising in many aspects. These findings from results and analysis above are summarised as
follows:

(1) Compared with the smooth friction model, the serrated model can significantly reduce
the horizontal displacements on each interface, and its performance is quite close to the
continuous model. The serrated model can also reduce vertical displacements compared
with the smooth friction model.

(2) Since the serrations can separate from each other, the serrated model bears mainly com-
pressive stresses in the longitudinal direction on each interface. The lack of tensile
stresses is very beneficial for preventing the generation and propagation of cracks at low
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temperature. In this aspect, the serrated model performs better than both the continuous
and the smooth friction model.

(3) The serrated model has very limited effect on the reduction of vertical stresses. Moreover,
the large and fluctuated interfacial shear stresses means that this model is not promising
for preventing shear failures.

The serrated model is quite promising especially in horizontal displacement reduction and
tensile stress prevention. It can improve the continuity of the pavement and better prevent
cracks, rutting and slippage according to the numerical results. However, due to its complex-
ity and non-linearity, this problem still needs more field and laboratory verification. Also,
potential additional difficulties and higher prices in the construction and maintenance process
should be noticed. More comprehensive work is expected in this interesting and promising
direction.
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